Skip to main content
Log in

Electrical Conduction and Dielectric Relaxation in Bismuth-Modified Lithium Lead Borate Glasses

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Glass compositions of 30Li2O·20PbO·xBi2O3·(50−x)B2O3 (x ranges from 0 mol% to 40 mol%) have been prepared. Conductivity and electric modulus formalism were used to investigate the fabricated glass series in the frequency range between 10−1–107 Hz, and the temperature range between 473–613 K. AC conductivity experimental data were fitted with Jonscher's power law. Electrical characteristics like crossover frequency (\({\omega }_{H}\)), frequency exponent (s), and dc conductivity (σac) were extracted. With the rise in bismuth concentration, the conductivity values first increase and then decrease when the concentration of bismuth exceeded the constant concentration (30 mol%) of lithium content. The decrease in the frequency exponent parameter values with the rise in temperature indicates that all the glass compositions followed the conduction mechanism of correlated barrier hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Kavaz, An experimental study on gamma-ray shielding features of lithium borate glasses doped with dolomite, hematite, and goethite minerals. Radiat. Phys. Chem. 160, 112 (2019).

    Article  CAS  Google Scholar 

  2. P.P. Pawar, S.R. Munishwar, and R.S. Gedam, Physical and optical properties of Dy3+/ Pr3+ Co-doped lithium borate glasses for W-LED. J. Alloys Compd. 660, 347 (2016).

    Article  CAS  Google Scholar 

  3. S.M. Salem, T.Z. Abou-Elnasr, W.A. El-Gammal, A.S. Mahmoud, H.A. Saudi, and A.G. Mostafa, Optical parameters and electrical transport properties of some barium-sodium-borate glasses doped bismuth oxide. J. Aerosp. Eng. 5(1), 1 (2018).

    Article  Google Scholar 

  4. G.P. Singh, P. Kaur, S. Kaur, and D.P. Singh, Role of WO3 in structural and optical properties of WO3–Al2O3–PbO–B2O3 glasses. Physics B406, 4652 (2011).

    Google Scholar 

  5. A. Terczynska-Madej, K. Cholewa-Kowalska, and M. Łaczka, Coordination and valence state of transition metal ions in alkali-borate glasses. Opt. Mater. 33(12), 1984 (2011).

    Article  CAS  Google Scholar 

  6. V. Martin, B. Wood, U. Werner-Zwanziger, and J. Zwanziger, Structural aspects of the photoelastic response in lead borate glasses. J. Non-Cryst. Solids 357(10), 2120 (2011).

    Article  CAS  Google Scholar 

  7. T. Takaishi, J. Jin, T. Uchino, and T. Yoko, Structural study of PbO–B2O3 glasses by X-ray diffraction and 11B MAS NMR techniques. J. Am. Ceram. Soc. 83(10), 2543 (2000).

    Article  CAS  Google Scholar 

  8. M. Subhadra, S. Sulochana, and P. Kistaiah, Effect of V2O5 content on physical and optical properties of lithium bismuth borate glasses. Mater. Today: Proc. 5(13), 26417 (2018).

    CAS  Google Scholar 

  9. R.V. Barde and S.A. Waghuley, Transport and physical properties of V2O5–P2O5–B2O3 glasses doped with Dy2O3. J. Adv. Ceram. 2(3), 246 (2013).

    Article  CAS  Google Scholar 

  10. L. Wu, A. Koryttseva, C.B. Gros, and A. Navrotsky, Thermochemical investigation of lithium borate glasses and crystals. J. Am. Ceram. Soc. 102(8), 4538 (2019).

    Article  CAS  Google Scholar 

  11. A.H. Hammad, M.S. Abdel-wahab, and S. Vattamkandathil, An investigation into the morphology and crystallization process of lithium borate glass containing vanadium oxide. J. Mater. Res. Technol. 16, 1713 (2022).

    Article  CAS  Google Scholar 

  12. P. Naresh, S.A. Priya, P.M. Mohan, B. Kavitha, N. Narsimlu, D. Sreenivasu, Ch. Srinivas, J.L. Naik, and K.S. Kumar, Effect of Network modifier ZnO on the Dielectric studies of lithium boro tellurite glasses for battery and photonic device applications. AIP Conf. Proc. 2162, 020007 (2019).

    Article  CAS  Google Scholar 

  13. K.H. Mahmoud, F.M. Abdel-Rahim, K. Atef, and Y.B. Saddeek, Dielectric dispersion in lithium bismuth-borate glasses. Curr. Appl. Phys. 11(1), 55 (2011).

    Article  Google Scholar 

  14. K. Moh, M. Tin, Z. Zinnaing, and P. Kaung, Electrical properties of lead-bismuth borate glasses. J. Myan. Acad. Arts Sci. VII(2A), 377 (2009).

    Google Scholar 

  15. B. Kalyani, N. Pujari, A. Edukondal, M.S. Reddy, and C.P. Vardhani, AC Conductivity and dielectric relaxation in Li2O-PbO-As2O3-B2O3 glasses. Chin. J. Phys. 79(6), 141 (2022).

    Article  CAS  Google Scholar 

  16. S. Bale and S. Rahman, Glass structure and transport properties of Li2O containing zinc bismuthate glasses. Opt. Mater. 31(2), 333 (2008).

    Article  CAS  Google Scholar 

  17. S. Bale and S. Rahman, Electrical conductivity studies of Bi2O3–Li2O–ZnO–B2O3 glasses. Mater. Res. Bull. 47, 1153 (2012).

    Article  CAS  Google Scholar 

  18. S. Bale, S. Rahman, Role of ZnO in Dc electrical conductivity of lithium bismuthate glasses. ISRN Mater. Sci. 2013, Article ID 126805.

  19. S. Rani, S. Sanghi, N. Ahlawat, and A. Agarwal, Influence of Bi2O3 on thermal, structural and dielectric properties of lithium zinc bismuth borate glasses. J. Alloys Compd. 597, 110 (2014).

    Article  CAS  Google Scholar 

  20. S. Chauhan, R. Bala, S. Gaur, D. Sharma, S. Rani, and R. Pal, Study of AC conductivity and dielectric relaxation in Bi2O3 modified lithium lead silicate glasses. Appl. Phys. A 129, 521 (2023).

    Article  CAS  Google Scholar 

  21. A. Madhu, N.S. Abd EL-Gawaad, S.A.O. Abdallah, S.T. Dadami, B.G. Hegde, T. Uthayakumar, M.B.K. Kumar, and N. Srinatha, Unravelling the conductivity behaviour of thermally stable Li2O–Bi2O3–B2O3–P2Oglasses embedded with V2O5. Ceram. Int. 49(17), 28781 (2023).

    Article  CAS  Google Scholar 

  22. S. Chauhan, R. Bala, S. Gaur, and S. Rani, Effect of Bi2O3 on structural and optical properties of Li2O·PbO·Bi2O3·B2O3 glasses. J. Mater. Sci. Mater. Electron. 33, 1 (2022).

    Article  Google Scholar 

  23. A. Dutta and A. Ghosh, Dynamics of lithium ions in calcium bismuthate glasses. J. Chem. Phys. 122, 234510 (2005).

    Article  CAS  Google Scholar 

  24. R. Murugaraj, Ac conductivity and its scaling behavior in borate and bismuthate glasses. J. Mater. Sci. 42, 10065 (2007).

    Article  CAS  Google Scholar 

  25. R. Punia, R.S. Kundu, M. Dult, S. Murugavel, and N. Kishore, Temperature and frequency dependent conductivity of bismuth zinc vanadate semiconducting glassy system. J. Appl. Phys. 112, 083701 (2012).

    Article  Google Scholar 

  26. A. Pan and A. Gosh, Dynamics of lithium ions in bismuthate glasses. J. Chem. Phys. 112, 1503 (2000).

    Article  CAS  Google Scholar 

  27. D.P. Almond and A.R. West, Anomalous conductivity prefactors in fast ion conductor. Nature 306, 457 (1983).

    Article  Google Scholar 

  28. A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectrics Press Ltd., 1983).

    Google Scholar 

  29. H. Jain and J.N. Mundy, Analysis of ac conductivity of glasses by a power law relationship. J. Non-Cryst. Solids 91(3), 315 (1987).

    Article  CAS  Google Scholar 

  30. A. Dutta and A. Ghosh, Structural and optical properties of lithium barium bismuthate glasses. J. Non-Cryst. Solids 353, 1333 (2007).

    Article  CAS  Google Scholar 

  31. R. Hisam, A.K. Yahya, H.M. Kamari, Z.A. Talib, and R.H.Y. Subban, Anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe2O3–(20–x)MnO2–80TeO2 glass system. Mater. Express 6, 149 (2016).

    Article  CAS  Google Scholar 

  32. R. Mahani and S. Marzouk, AC conductivity and dielectric properties of SiO2–Na2O–B2O3–Gd2O3 glasses. J. Alloys Compd. 579, 394 (2013).

    Article  CAS  Google Scholar 

  33. N.F. Mott and E.A. Davis, Disordered materials: Electronic Processes in Non-Crystalline Materials, 2nd ed., (New York: Clarendon Press, Oxford University Press, 1979).

    Google Scholar 

  34. S.R. Elliot, Temperature dependence of a.c. conductivity of chalcogenide glasses. Philos. Magn. B 37(5), 553–560 (1978).

    Article  Google Scholar 

  35. M.B. Hossen and A.K.M.A. Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4(3), 217 (2015).

    Article  CAS  Google Scholar 

  36. A.K. Roy, K. Prasad, and A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7(2), 81 (2013).

    Article  CAS  Google Scholar 

  37. K. Majhl, R. Vaish, G. Paramesh, and K.B.R. Varma, Electrical transport characteristics of ZnO–Bi2O3–B2O3 glasses. Ionics 19, 99 (2012).

    Article  Google Scholar 

  38. D.B. Dhwajam, M.B. Suresh, U.S. Hareesh, J.K. Thomas, S. Solomon, and A. John, Impedance and modulus spectroscopic studies on 40PrTiTaO6 + 60YTiNbO6 ceramic composite. J. Mater. Sci. Mater. Electron. 23, 653 (2012).

    Article  CAS  Google Scholar 

  39. M. Dult, R.S. Kundu, J. Hooda, S. Murugavel, R. Punia, and N. Kishore, Temperature and frequency dependent conductivity and electric modulus formulation of manganese modified bismuth silicate glasses. J. Non-Cryst. Solids 423, 1 (2015).

    Article  Google Scholar 

  40. R. Kohlrausch, Prog. Ann. Phys. 91, 179 (1854).

    Article  Google Scholar 

  41. G. Williams and D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970).

    Article  CAS  Google Scholar 

  42. R. Vaish and K.B.R. Varma, Dielectric properties of Li2O–3B2O3 glasses. J. Appl. Phys. 106, 064106 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to GJUST, Hisar for providing the broadband dielectric/impedance spectrometer novocontrol technology for dielectric measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Bala.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest for declaration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Bala, R., Yadav, D. et al. Electrical Conduction and Dielectric Relaxation in Bismuth-Modified Lithium Lead Borate Glasses. J. Electron. Mater. 52, 7952–7961 (2023). https://doi.org/10.1007/s11664-023-10753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10753-8

Keywords

Navigation