Skip to main content
Log in

Polydopamine/Silane Composite Coating on Electrolytic Copper Foil as Epoxy Adhesion Promoter and Corrosion Inhibitor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In order to enhance the electrolytic copper foil-epoxy adhesion in copper clad laminates, surface modification of the copper foil with a proper coupling agent is essential. However, single polydopamine (PDA) or silane coating on the copper foil is usually not satisfied. Herein, a composite coating on the copper foil is proposed by combining the universal adhesion promoter of PDA and the electrodeposited silane layer. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy confirmed the formation of the composite coating. The composite coating was uniformly distributed on the copper substrate as revealed by nano-infrared spectrometry and scanning electron microscopy observations. Compared with the pristine copper foil, the copper foil modified by the composite coating exhibited increased peel strength to the epoxy substrate by about 42.15% and improved corrosion resistance in both saline water and high-temperature (200°C) environments, which is attributed to its uniformity and the interface compatibility of the composite coating.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Y. Mao, C. You, J. Zhang, K. Huang, and K.B. Letaief, A survey on mobile edge computing: the communication perspective. IEEE Commun. Surv. Tutor. 19, 2322 (2017).

    Article  Google Scholar 

  2. D. Liu, W. Hong, T.S. Rappaport, C. Luxey, and W. Hong, What will 5G antennas and propagation be. IEEE T. Antenn. Propag. 65, 6205 (2017).

    Article  Google Scholar 

  3. M.-F. Jhong, P.-C. Pan, H.-H. Cheng, C.-C. Wang, in 2015 IEEE 17th Electronics Packaging and Technology Conference Procedings (2015), p. 1

  4. X. Ye, J. Fan, B. Chen, J.L. Drewniak, Q.B. Chen, in 2015 Asia-Pacific Symposium on Electromagnetic Compatibility Conference Procedings (2015), p. 16

  5. W. Xin, D. Cullen, G. Brist, and O.M. Ramahi, Surface finish effects on high-speed signal degradation. IEEE T. Adv. Packag. 31, 182 (2018).

    Article  Google Scholar 

  6. P. Nothdurft, G. Riess, and W. Kern, Copper/epoxy joints in printed circuit boards: manufacturing and interfacial failure mechanisms. Materials 12, 550 (2019).

    Article  CAS  Google Scholar 

  7. C. Wang, N. Wen, G. Zhou, S. Wang, W. He, X. Su, and Y. Hu, Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination. Appl. Surf. Sci. 422, 738 (2017).

    Article  CAS  Google Scholar 

  8. D.-Q. Zhang, L.-X. Gao, and G.-D. Zhou, Inhibition of copper corrosion in aerated hydrochloric acid solution by heterocyclic compounds containing a mercapto group. Corros. Sci. 46, 3031 (2004).

    Article  CAS  Google Scholar 

  9. C.M. Bertelsens and F.J. Boerio, Linking mechanical properties of silanes to their chemical structure: an analytical study of γ-GPS solutions and films. Prog. Org. Coat. 41, 239 (2001).

    Article  CAS  Google Scholar 

  10. S.H. Zaferani, M. Peikari, D. Zaarei, I. Danaee, J.M. Fakhraei and M. Mohammadi, Using silane films to produce an alternative for chromate conversion coatings. Corrosion 69, 372 (2013).

    Article  CAS  Google Scholar 

  11. B. Arkles, Tailoring surfaces with silanes. ChemTech 7, 766 (1977).

    CAS  Google Scholar 

  12. J.S. Quinton and P.C. Dastoor, Conformational dynamics of γ-APS on the iron oxide surface: an adsorption kinetic study using XPS and ToF-SIMS. Surf. Interface Anal. 30, 21 (2000).

    Article  CAS  Google Scholar 

  13. L. Yang, J. Feng, W. Zhang, and J.-E. Qu, Film forming kinetics and reaction mechanism of γ-glycidoxypropyltrimethoxysilane on low carbon steel surfaces. Appl. Surf. Sci. 256, 6787 (2010).

    Article  CAS  Google Scholar 

  14. J. Flis and M. Kanoza, Electrochemical and surface analytical study of vinyl-triethoxy silane films on iron after exposure to air. Electrochim. Acta 51, 2338 (2006).

    Article  CAS  Google Scholar 

  15. B. Chico, J.C. Galván, D. de la Fuente, and M. Morcillo, Electrochemical impedance spectroscopy study of the effect of curing time on the early barrier properties of silane systems applied on steel substrates. Prog. Org. Coat. 60, 45 (2007).

    Article  CAS  Google Scholar 

  16. H. Woo, P.J. Reucroft, and R.J. Jacob, Electrodeposition of organofunctional silanes and its influence on structural adhesive bonding. J. Adhes. Sci. Technol. 7, 681 (1993).

    Article  CAS  Google Scholar 

  17. D. Zhu and W.J. van Ooij, Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog. Org. Coat. 49, 42 (2004).

    Article  CAS  Google Scholar 

  18. S.-Z. Ding, L. Liu, J.-M. Hu, J.-Q. Zhang and C.-N. Cao, Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films. Scr. Mater. 59, 297 (2008).

    Article  CAS  Google Scholar 

  19. L. Liu, J.-M. Hu, J.-Q. Zhang, and C.-N. Cao, Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation. Electrochim. Acta 52, 538 (2006).

    Article  CAS  Google Scholar 

  20. J.-M. Hu, L. Liu, J.-Q. Zhang, and C.-N. Cao, Electrodeposition of silane films on aluminum alloys for corrosion protection. Prog. Org. Coat. 58, 265 (2007).

    Article  CAS  Google Scholar 

  21. R. Shacham, D. Avnir, and D. Mandler, Electrodeposition of methylated sol-gel films on conducting surfaces. Adv. Mater. 11, 384 (1999).

    Article  CAS  Google Scholar 

  22. H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426 (2007).

    Article  CAS  Google Scholar 

  23. B. Fei, B. Qian, Z. Yang, R. Wang, W.C. Liu, C.L. Mak, and J.H. Xin, Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46, 1795 (2008).

    Article  CAS  Google Scholar 

  24. F. Bernsmann, A. Ponche, C. Ringwald, J. Hemmerle, J. Raya, B. Bechinger, J.-C. Voegel, P. Schaaf, and V. Ball, Characterization of dopamine-melanin growth on silicon oxide. J. Phys. Chem. C 113, 8234 (2009).

    Article  CAS  Google Scholar 

  25. K.G. Malollari, P. Delparastan, C. Sobek, S.J. Vachhani, T.D. Fink, R.H. Zha, and P.B. Messersmith, Mechanical enhancement of bioinspired polydopamine nanocoatings. ACS Appl. Mater. Interfaces 11, 43599 (2019).

    Article  CAS  Google Scholar 

  26. H. Hemmatpour, O.D. Luca, D. Crestani, M.C.A. Stuart, A. Lasorsa, P.C.A. van der Wel, K. Loos, T. Giousis, V. Haddadi-Asl, and P. Rudolf, New insights in polydopamine formation via surface adsorption. Nat. Commun. 14, 664 (2023).

    Article  CAS  Google Scholar 

  27. J.H. Ryu, P.B. Messersmith, and H. Lee, Polydopamine surface chemistry: a decade of discovery. ACS Appl. Mater. Interfaces 10, 7523 (2018).

    Article  CAS  Google Scholar 

  28. T.-L. Chang, X. Yu, and J.F. Liang, Polydopamine-enabled surface coating with nano-metals. Surf. Coat. Tech. 337, 389 (2018).

    Article  CAS  Google Scholar 

  29. R. Sa, Y. Yan, Z. Wei, L. Zhang, W. Wang, and M. Tian, Surface Modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting. ACS Appl. Mater. Interfaces 6, 21730 (2014).

    Article  CAS  Google Scholar 

  30. Y. Uetsuji, T. Uetsuji, and Y. Nakamura, Interfacial adhesive strength of a silane coupling agent with metals: a first principles study. Mater. Today Commun. 25, 101397 (2020).

    Article  CAS  Google Scholar 

  31. T. Xu, Y. Zhao, J.-H. Zhou, and J.-M. Hu, Composite nanocontainers synthesized by in-situ growth of metal organic frameworks on layered double hydroxides having both passive and active protecting capabilities. Prog. Org. Coat. 164, 106695 (2022).

    Article  CAS  Google Scholar 

  32. A. Fateh, M. Aliofkhazraei, and A.R. Rezvanian, Review of corrosive environments for copper and its corrosion inhibitors. Arab. J. Chem. 13, 481 (2020).

    Article  CAS  Google Scholar 

  33. G. Zhou, Y. Tao, W. He, S. Wang, Y. Hong, C.-Y. Chen, Y. Chen, C. Wang, C. Ma, S. Guo, H. Miao, and J. Zhou, Whisker inhibited Sn–Bi alloy coating on copper surface to increase copper bonding strength for signal loss reduction of PCB in high-frequency. App. Surf. Sci. 513, 145718 (2020).

    Article  CAS  Google Scholar 

  34. E. Faure, C. Falentin-Daudré, C. Jérôme, J. Lyskawa, D. Fournier, P. Woisel, and C. Detrembleur, Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 38, 236 (2013).

    Article  CAS  Google Scholar 

  35. Y. Xie, C. Hill, Z. Xiao, H. Militz, and C. Mai, Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A 41, 806 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Zhejiang Huayuan New Energy Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

MZ Investigation, Methodology, Writing—original draft, Writing—review and editing. MG Data curation. JP Resources. JT Resources. XW Resources. CG Conceptualization, Resources, Writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Changdong Gu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 787 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Gan, M., Pan, J. et al. Polydopamine/Silane Composite Coating on Electrolytic Copper Foil as Epoxy Adhesion Promoter and Corrosion Inhibitor. J. Electron. Mater. 52, 8160–8174 (2023). https://doi.org/10.1007/s11664-023-10752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10752-9

Keywords

Navigation