Skip to main content
Log in

Nanocomposite Sensors of Polyaniline-Zn-Ag for the Detection of Pathogenic Leptospira Bacteria in Environmental Water

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This research is focused on the fabrication of a sensitive, durable and user-friendly polyaniline-Zn-Ag (PANI-Zn-Ag) nanocomposite thin film sensor for Leptospira bacterial detection. This study focuses on the performance of different concentration ratios of PANI-Zn-Ag nanocomposite thin films. The characterization of PANI-Zn-Ag nanocomposite thin films was carried out through field-emission scanning electron microscopy (FESEM), energy-dispersive x-ray (EDX) and atomic force microscopy (AFM). The sensitivity, selectivity, repeatability and stability performance of PANI-Zn-Ag nanocomposite thin films were studied using current–voltage (I–V) curves, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). FESEM results showed an irregular particle structure of PANI-Zn0.6-Ag0.4 with diameters ranging from 20 nm to 80 nm, with low agglomeration. AFM results showed that the PANI-Zn0.6-Ag0.4 nanocomposite thin film sensor had the highest average roughness and grain size. These specific morphological properties are required to maximize the reaction between the particles in PANI-Zn-Ag and the bacterial cells to increase the sensitivity. The repeatability and stability test showed a standard deviation range of 0.0005–0.001, which indicates that the PANI-Zn-Ag thin film sensor has high reusability. The selectivity test showed a large current gap between the deionized water test and the bacteria test. The sensitivity analysis showed that the PANI-Zn0.6-Ag0.4 nanocomposite thin film sensor had the highest sensitivity (26.2%). The results obtained confirm that the PANI-Zn-Ag nanocomposite thin film sensor has the potential for use as a biosensor for Leptospira bacterial detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.J. Waggoner, I. Balassiano, J. Abeynayake, M.K. Sahoo, and B.A. Pinsky, Sensitive real-time PCR detection of pathogenic Leptospira spp. and a comparison of nucleic acid amplification methods for the diagnosis of Leptospirosis. PloS One. 9, e112356 (2014).

    Article  Google Scholar 

  2. I.M. El Jalii and A.R. Bahaman, A review of human leptospirosis in Malaysia. Trop. Biomed. 21, 113 (2014).

    Google Scholar 

  3. J.S. Lehmann, M.A. Matthias, J.M. Vinetz, and D.E. Fouts, Leptospiral pathogenomics. Pathogens 3, 280 (2014).

    Article  CAS  Google Scholar 

  4. D. Musso and B. La, Laboratory diagnosis of leptospirosis: a challenge. J. Microbiol. Immunol. Infect. 46, 245 (2013).

    Article  CAS  Google Scholar 

  5. Y. Yaakob, K.F. Rodriguez, and D.V. John, Leptospirosis: recent incidents and available diagnostics—a review. Med. J. Malaysia 70, 6 (2015).

    Google Scholar 

  6. K.K. Sharma and U. Kalawat, Early diagnosis of leptospirosis by conventional methods: one-year prospective study. Indian J. Pathol. Microbiol. 51, 209 (2008).

    Article  Google Scholar 

  7. P.N. Levett, R.E. Morey, R.L. Galloway, D.E. Turner, A.G. Steigerwalt, and L.W. Mayer, Detection of pathogenic leptospires by real-time quantitative PCR. J. Med. Microbiol. 54, 45 (2005).

    Article  CAS  Google Scholar 

  8. P. Cumberland, C.O. Everard, and P.N. Levett, Assessment of the efficacy of an IgM-ELISA and microscopic agglutination test (MAT) in the diagnosis of acute leptospirosis. Am. J. Trop. Med. Hyg. 61, 5 (1999).

    Article  Google Scholar 

  9. B. Adler and A. De Pen, Leptospira and leptospirosis. Vet. Microbiol. 140, 287 (2010).

    Article  CAS  Google Scholar 

  10. K. Vedhagiri, S. Velineni, J.F. Timoney et al., Detection of LipL32-specific IgM by ELISA in sera of patients with a clinical diagnosis of leptospirosis. Pathog Glob Health 107, 3 (2013).

    Article  Google Scholar 

  11. A.E. Bal, C. Gravekamp, R.A. Hartskeerl, J. De Meza-Brewster, H. Orver, and W.J. Terpstra, Detection of leptospires in urine by PCR for early diagnosis of leptospirosis. J. Clin. Microbiol. 32, 1894 (1994).

    Article  CAS  Google Scholar 

  12. J. Thaipadunpanit, W. Chierakul, V. Wuthiekanun et al., Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and lipl32 genes for human leptospirosis in thailand: a case-control study. PLoS ONE 6, 1 (2011).

    Article  Google Scholar 

  13. N. Husna, I. Hussain, M.K. Mustafa, and S. Asman, Synthesis of PANI/Iron (II, III ) oxide hybrid nanocomposites using sol–gel method. J. Sci. Technol. 10, 1 (2018).

    Google Scholar 

  14. R. Pal, S. Mahendia, A.K. Tomar, and S. Kumar, γ-Irradiated PVA/Ag nanocomposite films: materials for optical applications. J. Alloys Compd. 538, 212 (2012).

    Article  Google Scholar 

  15. N. Asim, M.F. Syuhami, M. Badiei, and M.A. Yarmo, WO3 modification by synthesis of nanocomposites. Procedia Soc. Behav. Sci. 9, 175 (2014).

    CAS  Google Scholar 

  16. I. Izzuddin, M.H. Jumali, M. Yahaya, and M.M. Salleh, New hybridization approach of titanium organometallic: PANi thin films as room temperature gas sensors. Sains Malays. 41, 1017 (2012).

    CAS  Google Scholar 

  17. M. Pudukudy, Z. Yaakob, and Z.S. Akmal, Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts. Appl. Surf. Sci. 330, 418 (2015).

    Article  CAS  Google Scholar 

  18. M. Govindasamy, V. Mani, S. Chen, and A. Sathiyan, Sensitive and selective determination of uric acid using polyaniline and iron composite film modified electrode. Int. J. Electrochem. Sci. 11, 8730 (2016).

    Article  CAS  Google Scholar 

  19. B. Kuswandi, A. Restyana, A. Abdullah, L. Yook, and M. Ahmad, A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25, 184 (2012).

    Article  CAS  Google Scholar 

  20. H. Abdullah, M.A. Kamarudin, N.M. Naim, A.A. Hamid, and M.H.D. Othman, An electrochemical sensor based on PANI-Ag1x-Fex nanocomposite thin films irradiated by 10 kGy of gamma ray for E. coli detection applications. Mater. Res. Innov. 26, 159 (2021).

    Article  Google Scholar 

  21. A.D. Chowdhury, A. De, C.R. Chaudhuri, K. Bandyopadhyay, and P. Sen, Label free polyaniline based impedimetric biosensor for detection of E. coli O157:H7 bacteria. Sens. Actuators B. Chem. 171, 916 (2012).

    Article  Google Scholar 

  22. N. Su, Improving electrical conductivity, thermal stability and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes. Nanoscale Res. Lett. 10, 4 (2015).

    Article  Google Scholar 

  23. P.M. Ashraf, K.V. Lalitha, and L. Edwin, Chemical synthesis of polyaniline hybrid composite: a new and efficient sensor for the detection of total volatile basic nitrogen molecules. Sens. Actuators B. Chem. 208, 369 (2015).

    Article  CAS  Google Scholar 

  24. S.A. Nabi, M. Shahadat, R. Bushra, M. Oves, and F. Ahmed, Synthesis and characterization of polyanilineZr (IV) sulphosalicylate composite and its applications (1) electrical conductivity, and (2) antimicrobial activity studies. Chem. Eng. J. 173, 706 (2011).

    Article  CAS  Google Scholar 

  25. I. Rýger, G. Vanko, T. Lalinský, P. Kunzo, M. Vallo, I. Vávra, and T. Plecenik, Pt/NiO ring gate based Schottky diode hydrogen sensors with enhanced sensitivity and thermal stability. Sens. Actuators B Chem. 202, 1 (2014).

    Article  Google Scholar 

  26. P. Mathur, S.C.K. Misra, M. Yadav, S.S. Bawa, and A.K. Gupta, Nanocomposite copolymer thin films sensor for detection of Escherichia Coli. Proc. SPIE 6036, 377 (2006).

    Google Scholar 

  27. H. Abdullah, N.M. Naim, N.A.N. Azmy, and A.A. Hamid, PANI-Ag-Cu nanocomposite thin films based impedimetric microbial sensor for detection of E. coli bacteria. J. Nanomater. 2014, 951640 (2014).

    Article  Google Scholar 

  28. J. Jurait, H. Abdullah, I. Yahya, and S. Khairani, Characterization of expeditious Leptospira bacteria detection using PANI-Fe-Ni nanocomposite thin film. Polym. Bull. 77, 3969 (2020).

    Article  CAS  Google Scholar 

  29. H. Abdullah, S.M. Mustaza, S.K. Bejo, I. Yahya, N. Kamal, and M.H.D. Othman, Identification of Leptospira in water by Fe-Pd-doped polyaniline nanocomposite thin film. Nanomater. Nanotechnol. 11, 1–7 (2021).

    Article  Google Scholar 

  30. L. Hasanah, H.S. Nugroho, C. Wulandari, B. Mulyanti, D.D. Berhanuddin, M.H. Haron, P.S. Menon, A.R.M. Zain, I. Hamidah, K. Khairurrijal, and R. Mamat, Enhanced sensitivity of microring resonator-based sensors using the finite difference time domain method to detect glucose levels for diabetes monitoring. Appl. Sci. 10, 4191 (2020).

    Article  CAS  Google Scholar 

  31. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins, Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14, 599 (1999).

    Article  CAS  Google Scholar 

  32. B. Massoumi, S. Fathalipour, A. Massoudi, and M. Hassanzadeh, Ag/Polyaniline nanocomposites: synthesize, characterization and application to the detection of dopamine and tyrosine. J. Appl. Polym. Sci. 130, 2780 (2013).

    Article  CAS  Google Scholar 

  33. S. Ebrahimiasl and A. Zakaria, Characterization and gas sensing properties of hybrid Ppy/CS coated ZnO nanospheres. Int. J. Electrochem. Sci. 11, 9902 (2016).

    Article  CAS  Google Scholar 

  34. N.M. Naim, H. Abdullah, A.A. Umar, A.A. Hamid, and S. Shaari, Thermal annealing effect on structural, morphological, and sensor performance of PANI-Ag-Fe based electrochemical E. coli sensor for environmental monitoring. Sci. World J. 2015, 696521 (2015).

    Google Scholar 

  35. X. Zhang, W. Lu, E. Han, S. Wang, and J. Shen, Electrochimica acta hybrid nanostructure-based immunosensing for electrochemical assay of Escherichia coli as indicator bacteria relevant to the recycling of urban sludge. Electrochim. Acta. 141, 384 (2014).

    Article  CAS  Google Scholar 

  36. A. Amlil, K. Oeab, B. Bea, J. Bengourram, R. Najih, H. Latrache, and C. Abdelilah, Electrochemical biosensor for the immediate detection of bacteria. Biosens. Bioelectron. 7, 1 (2016).

    Google Scholar 

  37. S. Sotirov, I. Bodurov, and M. Marudova, Novel ammonia sensor based on polyaniline/polylactic acid composite films. J. Phys. Conf. Ser. 794, 012023 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by Dana Impak Perdana (DIP 2016-021), Fundamental Research Grant Scheme (FRGS/1/2019/STG07/UKM/02/11), and the Photonic Technology Laboratory, from the Department of Electrical, Electronic and System Engineering, University Kebangsaan Malaysia, Bangi, Selangor, Malaysia, and the Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine University Putra Malaysia, Serdang, Selangor, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huda Abdullah.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Yu, J.W., Suppiah, A.R. et al. Nanocomposite Sensors of Polyaniline-Zn-Ag for the Detection of Pathogenic Leptospira Bacteria in Environmental Water. J. Electron. Mater. 52, 8191–8202 (2023). https://doi.org/10.1007/s11664-023-10738-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10738-7

Keywords

Navigation