Skip to main content
Log in

Enhancing the Thermoelectric Power Factor by Lowering the Electrical Resistivity of Bi2Se3/NaI Composites Prepared by Solid-State Reaction

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The current work is focused on the thermoelectric properties of Bi2Se3/NaI synthesized by solid-state reaction. X-ray diffraction data show that Bi2Se3/NaI displays a hexagonal crystal structure with the R \(\overline{3}\) m space group. Using a small polaron hopping model, the electrical resistivity data in the high-temperature range (30–425°C) have been explained. The antisite defects with uncharged substitution in the examined crystals simultaneously affect the electrical resistivity and the Seebeck coefficient values when NaI is introduced to the Bi2Se3 matrix. The electrical resistivity of Bi2Se3/6% NaI is 1.2 times lower than that of pure Bi2Se3. Compared to pure Bi2Se3, the Seebeck coefficient and power factor values of Bi2Se3/2% NaI are found to be 1.33 and 1.5 times higher, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data and Code Availability

The thermoelectric data were generated at Centre of clean and green energy centre, Department of Physics, Manipal Institute of Technology, MAHE, Manipal. The findings of this study are available from the corresponding authors [GSH and ANP] on request.

References

  1. S. Gautam, A.K. Verma, A. Balapure, B. Singh, R. Ganesan, M.S. Kumar, V.N. Singh, B. Gahtori, and S.S. Kushvaha, Photocurrent in Bi2Se3 films electrodeposited with predominance of the orthorhombic phase. J. Electron. Mater. 51, 2500 (2022).

    Article  CAS  Google Scholar 

  2. M.B. Sigman and B.A. Korgel, Solventless synthesis of Bi2S3 (bismuthinite) nanorods, nanowires, and nanofabric. Chem. Mater. 17(7), 1655–1660 (2005).

    Article  CAS  Google Scholar 

  3. Z.-H. Ge, P. Qin, D. He, X. Chong, D. Feng, Y.-H. Ji, J. Feng and J. He, Optimized thermoelectric properties of sulfide compound Bi2SeS2 by iodine doping. ACS Appl. Mater. Interfaces 9, 4828 (2017).

    Article  CAS  Google Scholar 

  4. M. Samanta and K. Biswas, 2D nanosheets of topological quantum materials from homologous (Bi2) m (Bi2 Se3) n heterostructures: synthesis and ultralow thermal conductivity. Chem. Mater. 32, 8819 (2020).

    Article  CAS  Google Scholar 

  5. B.B. Singh, S.K. Jena, M. Samanta, K. Biswas, and S. Bedanta, High spin to charge conversion efficiency in electron beam-evaporated topological insulator Bi2Se3. ACS Appl. Mater. Interfaces 12, 53409 (2020).

    Article  CAS  Google Scholar 

  6. G.S. Hegde, A.N. Prabhu, Y.H. Gao, Y.K. Kuo, and V.R. Reddy, Improved electrical conductivity and power factor in Sn and Se co-doped melt-grown Bi2Te3 single crystal. J. Alloys Compd. 866, 158814 (2021).

    Article  CAS  Google Scholar 

  7. G.S. Hegde, A.N. Prabhu, C.F. Yang, and Y.K. Kuo, Reduction in electrical resistivity of bismuth selenide single crystal via Sn and Te co-doping Mater. Chem. Phys. 278, 125675 (2022).

    CAS  Google Scholar 

  8. G.S. Hegde, and A.N. Prabhu, A review on doped/composite bismuth chalcogenide compounds for thermoelectric device applications: various synthesis techniques and challenges. J. Electron. Mater. 51, 2014 (2022).

    Article  CAS  Google Scholar 

  9. G.S. Hegde, A.N. Prabhu, A. Rao, and P.D. Babu, Enhancement of thermoelectric performance of In doped Bi2Te2 7Se0 3 compounds. Physica B: Condens. Matter. 1(584), 412087 (2020).

    Article  Google Scholar 

  10. D. Louër, and A. Boultif, Enhancement of thermoelectric performance of In doped Bi2Te27Se0.3 compounds. Powder Diffr. 29, S7 (2014).

    Article  Google Scholar 

  11. N. Narendra, P. Norouzzadeh, D. Vashaee, and K.W. Kim, Doping induced enhanced density of states in bismuth telluride. Appl. Phys. Lett. 111(23), 232101 (2017).

    Article  Google Scholar 

  12. A. Gaul, Q. Peng, D.J. Singh, G. Ramanath, and T. Borca-Tasciuc, Pressure-induced insulator-to-metal transitions for enhancing thermoelectric power factor in bismuth telluride-based alloys. Phys. Chem. Chem. Phys. 19, 12784 (2017).

    Article  CAS  Google Scholar 

  13. S. Mondal, T. Paul, A. Ghosh, and V. Venkataraman, Gate-controllable electronic trap detection in dielectrics. IEEE Electron Device Lett. 41, 717 (2020).

    Article  CAS  Google Scholar 

  14. R. Zhao, J. Gao, A. Kao, and K. Pericleous, Measurements and modelling of dendritic growth velocities of pure Fe with thermoelectric magnetohydrodynamics convection. J. Cryst. Growth 475, 354 (2017).

    Article  CAS  Google Scholar 

  15. J.H. Kim, H. Cho, S.Y. Back, J.H. Yun, H.S. Lee, and J.-S. Rhyee, Enhanced thermoelectric performance of n-type SnxBi2TeSe2.70.3 based composites embedded with in-situ formed SnBi and Te nanoinclusions. J. Alloys Compd. 815, 152649 (2020).

    Article  CAS  Google Scholar 

  16. T. Ian, Witting, C. Thomas, Chasapis, F. Ricci, Matthew Peters, Nicholas A. Heinz, Geoffroy Hautier, and G. Jeffrey Snyder, The thermoelectric properties of bismuth telluride. Adv. Elect. Mat. 4, 1800904 (2019)

  17. J. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1–x prepared by bulk mechanical alloying and hot pressingJ. Alloys Compd. 312, 326 (2000).

    Article  CAS  Google Scholar 

  18. M.-K. Han, B.-G. Yu, Y. Jin, and S.-J. Kim, Thermoelectric properties of Bi2Te3: CuI and the effect of its doping with Pb atomsinorg. Chem. Front. 4, 881 (2017).

    CAS  Google Scholar 

  19. S.S. Hong, J.J. Cha, D. Kong, and Y. Cui, Ambipolar field effect in Sb-Doped Bi2Se3 nanoplates by solvothermal synthesis. Nat. Commun. 3, 757 (2012).

    Article  Google Scholar 

  20. Y. Saberi, S.A. Sajjadi, and H. Mansouri, Comparison of characteristics of Bi2Te3 and Bi2Te2.7Se0.3 thermoelectric materials synthesized by hydrothermal process Ceram. Int. 47, 11547 (2021).

    CAS  Google Scholar 

  21. G.R. Miller, C. Li, and C.W. Spencer, J. Appl. Phys. 34, 1398 (1963).

    Article  CAS  Google Scholar 

  22. G.S. Hegde, A.N. Prabhu, A. Rao, K. Gurukrishna, and S.U. Deepika, Investigation of near-room and high-temperature thermoelectric properties of (Bi0 98In0 02)2Se2 7Te0 3/Bi2Te3 composite system. J. Mater. Sci. Mater. Electron. 33(33), 25163–25173 (2022).

    Article  CAS  Google Scholar 

  23. K. Gurukrishna, A. Rao, Z.Z. Jiang, and Y.K. Kuo, Existence of partially degenerate electrical transport in intermetallic Cu2SnSe3. Thermoel. Syst. Sintered Diff. TemperaturesIntermetallics 122, 106803 (2020).

    CAS  Google Scholar 

  24. J. H. Kim, S. Y. Back, J. H. Yun, H. S. Lee, and J.-S. Rhyee, Scattering mechanisms and suppression of bipolar diffusion effect in Bi2Te2.85Se0.15Ix compounds materials (Basel). 14, 1564 (2021).

  25. B. Cai, J. Li, H. Sun, L. Zhang, B. Xu, W. Hu, D. Yu, J. He, Z. Zhao, Z. Liu, and Y. Tian, Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure. Sci. China Mater. 61, 1218 (2018).

    Article  CAS  Google Scholar 

  26. J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi, and G. Qiao, Graphene oxide: a promising nanomaterial for energy and environmental applications. J. Alloys Compd. 728, 351 (2017).

    Article  CAS  Google Scholar 

  27. K. Gurukrishna, H.R. Nikhita, S.M.M. Swamy, and A. Rao, BiCuSeO/GdH2 thermoelectric composite: a p-type to n-type promoter with superior charge transportMet. Mater. Int. 28, 2023 (2022).

    Article  CAS  Google Scholar 

  28. R. Nayak, P. Shetty, M. Selvakumar, A. Rao, K.M. Rao, K. Gurukrishna, and S. Mangavati, Enhancement of power factor of screen printed polyaniline/graphite based flexible thermoelectric generator by structural modifications. J. Alloy. Compounds. 20(922), 166298 (2022).

    Article  Google Scholar 

  29. M.K. Han, B.G. Yu, Y. Jin, and S.J. Kim, A synergistic effect of metal iodide doping on the thermoelectric properties of Bi2 Te3. Inorganic Chem. Front. 4(5), 881–888 (2017).

    Article  CAS  Google Scholar 

  30. G.-E. Lee, and I.-H. Kim, Preparation and thermoelectric properties of iodine-doped Bi2Te3-Bi2Se3 solid solutions. J. Korean Phys. Soc. 65, 701 (2014).

    Article  Google Scholar 

  31. J. Yang, G. Liu, J. Yan, X. Zhang, Z. Shi, and G. Qiao, Enhanced the thermoelectric properties of n-type Bi2S3 polycrystalline by iodine, doping. J. Alloy. Compd. 728, 351 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The funds provided under the grant number CRS/2022-23/03/879 and DST-FIST Grant (SR/FIST/PS-1/2017/8) has been used to partially complete the research project. All the authors would like to thank Dr. Gurukrishna K., Post Doctoral Researcher, IIT Kanpur, Mr. Nagendra Prasad, Assistant Professor, Department of Physics, Acharya Institute of Technology, Bengaluru, Dr. Abhiram J. Assistant Professor, Indian Academy Degree College, Bengaluru, Dr. Shivananda C. S., and Dr. Latharani N, Mr. Rajkumar M. Badiger. The authors would also like to acknowledge Dr. Arun Kumar Sonappanavar, Principal, and Mr. Gopiraj S. Senior attender, KLE S. Nijalingappa College, Bengaluru.

Author information

Authors and Affiliations

Authors

Contributions

Sample synthesis and preliminary analysis: TB, PV. K N. S., SP, TST., TR., VS. N, RR. P, NS. Methodology: VP P. K., AM., GR. Design and illustration: VD. SK. Review of research work: A. N. P, AR, SP, Data curation and analysis: M. S. M, DS U. Writing, review & editing, supervision: GSH. Mathematical calculation: JK.R.

Corresponding authors

Correspondence to Ganesh Shridhar Hegde or A. N. Prabhu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivekananda, Prarthana, P.K., Archana, M. et al. Enhancing the Thermoelectric Power Factor by Lowering the Electrical Resistivity of Bi2Se3/NaI Composites Prepared by Solid-State Reaction. J. Electron. Mater. 52, 8076–8085 (2023). https://doi.org/10.1007/s11664-023-10725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10725-y

Keywords

Navigation