Skip to main content
Log in

Improving the Uniform Distribution of Nano-Ag in Al-Doped ZnO Film to Enhance Its Application in Soft Touch Sensing Electrodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Oxygen plasma etching has been performed to roughen the surface structure of an Al-doped ZnO (AZO) seed layer. The distribution of Ag nanoparticles was optimized to improve the characteristics of a film and facilitate its application as a touch sensing electrode. First, an intermittent procedure was performed to optimize the quality of the AZO seed layer. After the optimal parameters were obtained according to the figure-of-merit, the surface of the seed layer was roughened, and the depth of surface roughening was affected by adjusting the etching power of the oxygen plasma, and the surface roughness uniformity was affected by adjusting the etching time. Finally, by changing the etching oxygen flow rate, the width of the rough structure was further affected. The above three steps can optimize the surface roughness structure and effectively improve the uniform distribution of Ag nano-particles. To improve the sensitivity (SE) and stability (ST) of the film, the density of nano-Ag particles was modulated. The characteristics of film carriers were measured with a Hall effect analyzer. The surface morphology of the seed layer and the crystallinity change of the film were examined using electron microscopy, x-ray diffraction, ultraviolet–visible spectroscopy, and atomic force microscopy. The results revealed that a favorable film quality was achieved by performing three intermittent procedures. When the AZO seed layer surface was etched with a power of 50 W for 5 min, a 50-sccm etching oxygen flow and a 90-W nano-Ag deposition power were applied for 20 s, the density and distribution of the nano-Ag particles was favorable, and the SE and ST of the film were optimal. Under these conditions, the film’s resistance was 3.21 × 10−3 Ω-cm, its SE was 45.04%–52.48%, and its ST error was within 7.44%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. N.M. Le and B.-T. Lee, Highly conducting and highly transparent oxide/metal/oxide structures for ultraviolet-C light sources utilizing a thin Cu wetting interlayer. ACS Appl. Mater. Interfaces 9(37), 323 (2017).

    Article  Google Scholar 

  2. Y.-D. Ko, K.-C. Kim, and Y.-S. Kim, Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes. Superlattices Microstruct. 51, 941 (2012).

    Article  Google Scholar 

  3. Y.-S. Lin and Y.-H. Huang, Study of optoelectronics and microstructures on the AZO/nano-layer metals/AZO sandwich structures. J. Mater. Sci.: Mater. Electr. 24, 3058 (2013).

    CAS  Google Scholar 

  4. L. Wang, C. Hu, and L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227 (2017).

    Article  CAS  Google Scholar 

  5. R.A. Maniyara, V.K. Mkhitaryan, T.L. Chen, D.S. Ghosh, and V. Pruneri, An antireflection transparent conductor with ultralow optical loss and electrical resistance. Nat. Commun. 7, 13771 (2016).

    Article  CAS  Google Scholar 

  6. H. Moon, P. Won, J. Lee, and S.H. Ko, Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnology 27, 295201 (2016).

    Article  Google Scholar 

  7. H.J. Choi, S.G. Yoon, J.H. Lee, and J.Y. Lee, Crystallized indium-tin oxide (ITO) thin films grown at low temperature onto flexible polymer substrates. ECS J. Solid State Sci. Technol. 1, Q106 (2012).

    Article  CAS  Google Scholar 

  8. C.-C. Wu, Highly flexible touch screen panel fabricated with silver-inserted transparent ITO triple-layer structures. RSC Adv. 22, 11862 (2018).

    Article  Google Scholar 

  9. X. Yin, W. Que, D. Fei, F. Shen, and Q. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties. J. Alloys Compd. 524, 13 (2012).

    Article  CAS  Google Scholar 

  10. P. Makvandi, C. Wang, E. Zare, A. Borzacchiello, L. Niu, and F. Tay, Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects. Adv. Funct. Mater. 30, 1910021 (2020).

    Article  CAS  Google Scholar 

  11. B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, and J.M. Myoung, Post-annealing of Al-doped ZnO films in hydrogen atmosphere. J. Cryst. Growth 281, 475–480 (2005).

    Article  CAS  Google Scholar 

  12. S. Fareed, A. Jamil, F. Afsar, F. Sher, C. Li, X. Xu, and M.A. Rafiq, Selective oxygen sensor prepared using Ni-doped zinc ferrite nanoparticles. J. Electron. Mater. 48, 5677 (2019).

    Article  CAS  Google Scholar 

  13. D. Valerini, L. Tammaro, F. Di Benedetto, G. Vigliotta, L. Capodieci, R. Terzi, and A. Rizzo, Aluminum-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging. Thin Solid Film 645, 187–192 (2018).

    Article  CAS  Google Scholar 

  14. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206 (2018).

    Article  CAS  Google Scholar 

  15. F. Liu, B. Wang, X. Yang, Y. Guan, R. Sun, Q. Wang, X. Liang, P. Sun, and G. Lu, High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) sensing electrodes for detection of NO2. Sens. Actuators B Chem. 232, 523 (2016).

    Article  CAS  Google Scholar 

  16. K. Suematsu, K. Watanabe, A. Tou, Y. Sun, and K. Shimanoe, Ultraselective toluene-gas sensor: nanosized gold loaded on zinc oxide nanoparticles. Anal. Chem. 90, 1959 (2018).

    Article  CAS  Google Scholar 

  17. L. Bocquet and E. Charlaix, Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073 (2010).

    Article  CAS  Google Scholar 

  18. M. Travagliati, D. Nardi, C. Giannetti, V. Gusev, P. Pingue, V. Piazza, G. Ferrini, and F. Banfi, Interface nano-confined acoustic waves in polymeric surface phononic crystals. Appl. Phys. Lett. 106, 021906 (2015).

    Article  Google Scholar 

  19. K. Gold, B. Slay, M. Knackstedt, and A. Gaharwar, Antimicrobial activity of metal and metal-oxide based nanoparticles. Adv. Ther. 1, 1700033 (2018).

    Article  Google Scholar 

  20. G. Benetti, M. Gandolfi, M. Van Bael, L. Gavioli, C. Giannetti, C. Caddeo, and F. Banfi, Photoacoustic sensing of trapped fluids in nanoporous thin films: device engineering and sensing scheme. ACS Appl. Mater. Interfaces 10, 27947 (2018).

    Article  CAS  Google Scholar 

  21. V. Saxena, P. Chandra, and L. Pandey, Design and characterization of novel Al-doped ZnO nanoassembly as an effective nanoantibiotic. Appl. Nanosci. 8, 1925 (2018).

    Article  CAS  Google Scholar 

  22. J. Huang, X. Li, and W. Zhou, Safety assessment of nanocomposite for food packaging application. Trends Food Sci. Technol. 45, 187 (2015).

    Article  CAS  Google Scholar 

  23. K. Wegner, P. Piseri, H. Tafreshi, and P. Milani, Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D Appl. Phys. 39, R439 (2006).

    Article  CAS  Google Scholar 

  24. F. Cao, L. Zhang, H. Wang, Y. You, Y. Wang, N. Gao, J. Ren, and X. Qu, Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem. Int. Ed. 58, 16236 (2019).

    Article  CAS  Google Scholar 

  25. R. Pantani, G. Gorrasi, G. Vigliotta, M. Murariu, and P. Dubois, PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur. Polym. J. 49, 3471 (2013).

    Article  CAS  Google Scholar 

  26. A.S.M.I. Uddin and G.-S. Chung, Synthesis of highly stable silver-loaded vertical ZnO nanowires array and its acetylene sensing properties. Surf. Rev. Lett. 23, 1550087 (2016).

    Article  CAS  Google Scholar 

  27. N. Maréchal, E. Quesnel, and Y. Pauleau, Silver thin films deposited by magnetron sputtering. Thin Solid Film. 241, 34 (1994).

    Article  Google Scholar 

  28. S. Kang, R. Nandi, J.-K. Sim, J.-Y. Jo, U. Chatterjee, and C.-R. Lee, Characteristics of an oxide/metal/oxide transparent conducting electrode fabricated with an intermediate Cu–Mo metal composite layer for application in efficient CIGS solar cell. RSC Adv. 7, 48113 (2017).

    Article  CAS  Google Scholar 

  29. E. Aydin and N.D. Sankir, AZO/metal/AZO transparent conductive oxide thin films for spray pyrolyzed copper indium sulfide based solar cells. Thin Solid Films 653, 29 (2018).

    Article  CAS  Google Scholar 

  30. D. Valerini, L. Tammaro, F. Villani, A. Rizzo, I. Caputo, G. Paolella, and G. Vigliotta, Ag functionalization of Al-doped ZnO nanostructured coatings on PLA substrate for antibacterial applications. J. Mater. Sci. 55, 4830 (2020).

    Article  CAS  Google Scholar 

  31. M. Chuang and F. Chen, Synergistic plasmonic effects of metal nanoparticle—decorated PEGylated graphene oxides in polymer solar cells. ACS Appl. Mater. Interfaces 7, 7397 (2015).

    Article  CAS  Google Scholar 

  32. W. Oliver and G. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  33. M. Chiodi, C.P. Cheney, P. Vilmercati, E. Cavaliere, N. Mannella, H.H. Weitering, and L. Gavioli, Enhanced dopant solubility and visible-light absorption in Cr-N codoped TiO2 nanoclusters. J. Phys. Chem. C 116, 311 (2012).

    Article  CAS  Google Scholar 

  34. M.G. Blaber, M.D. Arnold, and M.J. Ford, Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. J. Phys. Chem. C 8, 3041 (2009).

    Article  Google Scholar 

  35. E. Cavaliere, G. Benetti, M. Van Bael, N. Winckelmans, S. Bals, and L. Gavioli, Exploring the optical and morphological properties of Ag and Ag/TiO2 nanocomposites grown by supersonic cluster beam deposition. Nanomaterials 7, 442 (2017).

    Article  Google Scholar 

  36. G. Torrisi, I. Crupi, S. Mirabella, and A. Terrasi, Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress. Solar Energy Mater. Solar Cells 165, 88 (2017).

    Article  CAS  Google Scholar 

  37. G. Benetti, E. Cavaliere, R. Brescia, S. Salassi, R. Ferrando, A. Vantomme, L. Pallecchi, S. Pollini, S. Boncompagni, and B. Fortuni, Tailored Ag–Cu–Mg multielemental nanoparticles for wide-spectrum antibacterial coating. Nanoscale 11, 1626 (2019).

    Article  CAS  Google Scholar 

  38. A. Tangerman and E.G. Winkel, Extra-oral halitosis: an overview. J. Breath Res. 4, 017003 (2010).

    Article  CAS  Google Scholar 

  39. N.M. Vuong, N.D. Chinh, B.T. Huy, and Y.-I. Lee, CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Sci. Rep. 6, 26736 (2016).

    Article  Google Scholar 

  40. Z. Zeng, X. Huang, Z. Yin, H. Li, Y. Chen, H. Li, Q. Zhang, J. Ma, F. Boey, and H. Zhang, Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv. Mater. 24, 4138–4142 (2012).

    Article  CAS  Google Scholar 

  41. P. Mendez-Pfeiffer, L. Urzua, E. Sanchez-Mora, A. Gonzalez, J. Romo-Herrera, J. Arciniega, and L. Morales, Damage on Escherichia coli and Staphylococcus aureus using white light photoactivation of Au and Ag nanoparticles. J. Appl. Phys. 125, 213102 (2019).

    Article  Google Scholar 

  42. X. Zhou, S. Lee, Z. Xu, and J. Yoon, Recent progress on the development of chemosensors for gases. Chem. Rev. 115, 7944 (2015).

    Article  CAS  Google Scholar 

  43. F. Cao, L. Zhang, H. Wang, Y. You, Y. Wang, N. Gao, J. Ren, and X. Qu, Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem.-Int. Ed. 58, 16236–16242 (2019).

    Article  CAS  Google Scholar 

  44. S.H. Ahn and L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3, 2304 (2009).

    Article  CAS  Google Scholar 

  45. J.Y. Park, S.W. Choi, and S.S. Kim, A model for the enhancement of gas sensing properties in SnO2-ZnO core-shell nanofibres. J. Phy. D 44, 205403 (2011).

    Article  Google Scholar 

  46. T. Rakshit, S. Santra, I. Manna, and S.K. Ray, Enhanced sensitivity and selectivity of brush-like SnO2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds. RSC Adv. 4, 36749 (2014).

    Article  CAS  Google Scholar 

  47. H.-J. Choi, S.-J. Choi, S. Choo, I.-D. Kim, and H. Lee, Hierarchical ZnO nanowires-loaded Sb-doped SnO2-ZnO micrograting pattern via direct Imprinting-assisted hydrothermal growth and its selective detection of acetone molecules. Sci. Rep. 6, 18731 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported as projects of the I-Shou University, Taiwan R.O.C. under Grants ISU112-01-01A, ISU111-01-02A and the Ministry of Science and Technology, Taiwan R.O.C., under Grants MOST108-2221-E-214-028 and MOST111-2918-I-214 -001.

Author information

Authors and Affiliations

Authors

Contributions

Y-SL: Writing—Original Draft Preparation and Writing—Review and Editing, C-HT and Y-CTJ: Formal Analysis, Investigation and Data Curation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yen-Sheng Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YS., Teng, CH. & James, YC.T. Improving the Uniform Distribution of Nano-Ag in Al-Doped ZnO Film to Enhance Its Application in Soft Touch Sensing Electrodes. J. Electron. Mater. 52, 7907–7919 (2023). https://doi.org/10.1007/s11664-023-10704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10704-3

Keywords

Navigation