Skip to main content
Log in

Introduction Rates of Electrically Active Radiation Defects in Proton Irradiated n-Type and p-Type Si Monocrystals

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The introduction rates of electrically active radiation defects \(\Delta N_{{{\text{def}}}} /\Delta \Phi\) were studied as a function of 15.5 MeV energy proton radiation fluence \(\left( \Phi \right)\) in n-type and p-type Si semiconductor crystals. The concentration of electrically active radiation defects \( N_{{{\text{def}}}}\) was determined as the difference between the charge carrier concentration before \(n_{0}\) and after \(n\left( \Phi \right) \) irradiation, at room temperature. It was demonstrated that the concentration of electrically active radiation defects in silicon crystals produced by proton irradiation can be described by an empirical exponential function. The experimental results show that the introduction rate of electrically active radiation defects depends on the initial sample parameters, and during the initial phase of irradiation by protons it is significantly higher than that for 3.5 MeV energy electron irradiation. It was shown that samples with a low introduction rate of radiation defects are more resistant to the effects of particle irradiation. The charge carrier mobility in both n-type and p-type silicon crystals changes slightly as a result of proton irradiation, in contrast to the significant decreases observed under conditions of electron irradiation. In the case of proton irradiation, the resistivity of n-type and p-type silicon crystals increases exponentially with the level of radiation fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SRIM:

Stopping and Range of Ions in Matter

NIEL:

Non-ionizing energy loss

CANDLE:

Center for the Advancement of Natural Discoveries using Light Emission

References

  1. P. Siffert, and E.F. Krimmel, Silicon: Evolution and Future of a Technology, 1st ed., (Berlin, Heidelberg: Springer, 2004).

    Book  Google Scholar 

  2. S. Babaee and S.B. Ghozati, The study of 1 MeV electron irradiation induced defects in N- and P-type monocrystalline silicon. Radiat. Phys. Chem. 141, 98 (2017). https://doi.org/10.1016/j.radphyschem.2017.06.012.

    Article  CAS  Google Scholar 

  3. H. Baek, G. Kwon, J. Nam, S. Kim, H. Kim, B.-G. Park, J. Lee, M. Kang, G.M. Sun, and C. Shin, Microwave photoconductance decay measurements of n- and p-type silicon irradiated with neutrons and protons. Radiat. Phys. Chem. 185, 109501 (2021). https://doi.org/10.1016/j.radphyschem.2021.109501.

    Article  CAS  Google Scholar 

  4. K.D. Bartlett, D.D. Coupland, D.T. Beckman, and K.E. Mesick, Proton irradiation damage and annealing effects in ON semiconductor J-series silicon photomultipliers. Nucl. Instrum. Methods Phys. Res. Sect. A 969, 163957 (2020). https://doi.org/10.1016/j.nima.2020.163957.

    Article  CAS  Google Scholar 

  5. C. Bebek, D. Groom, S. Holland, A. Karcher, W. Kolbe, J. Lee, M. Levi, N. Palaio, B. Turko, M. Uslenghi, M. Wagner, and G. Wang, Proton radiation damage in p-channel CCDs fabricated on high-resistivity silicon. IEEE Trans. Nucl. Sci. 49, 1221 (2002). https://doi.org/10.1109/TNS.2002.1039641.

    Article  Google Scholar 

  6. Y.B. Khormizi, K.R. Ebrahim Saraee, and G. Aslani, An analysis of 30 MeV proton irradiation and annealing effects on silicon NPN power transistors. Iran. J. Sci. Technol. Trans. A Sci. 43, 2613 (2018). https://doi.org/10.1007/s40995-018-0592-y.

    Article  Google Scholar 

  7. H. Kauppinen, C. Corbel, K. Skog, K. Saarinen, T. Laine, P. Hautojärvi, P. Desgardin, and E. Ntsoenzok, Divacancy and Resistivity profiles in n-type Si implanted with 1.15-MeV protons. Phys. Rev. B 55, 9598 (1997). https://doi.org/10.1103/physrevb.55.9598.

    Article  CAS  Google Scholar 

  8. V.V. Emtsev, A.M. Ivanov, V.V. Kozlovski, A.A. Lebedev, G.A. Oganesyan, N.B. Strokan, and G. Wagner, Similarities and distinctions of defect production by fast electron and proton irradiation: moderately doped silicon and silicon carbide of n-type. Semiconductors 46, 456 (2012). https://doi.org/10.1134/S1063782612040069.

    Article  CAS  Google Scholar 

  9. I. Pintilie, G. Lindstroem, A. Junkes, and E. Fretwurst, Radiation-induced point- and cluster-related defects with strong impact on damage properties of silicon detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 611, 52 (2009). https://doi.org/10.1016/j.nima.2009.09.065.

    Article  CAS  Google Scholar 

  10. R. Radu, E. Fretwurst, R. Klanner, G. Lindstroem, and I. Pintilie, Radiation damage in n-type silicon diodes after electron irradiation with energies between 1.5 MeV and 15 MeV. Nucl. Instrum. Methods Phys. Res. Sect. A 730, 84 (2013). https://doi.org/10.1016/j.nima.2013.04.080.

    Article  CAS  Google Scholar 

  11. T. Hisamatsu, O. Kawasaki, S. Matsuda, and K. Tsukamoto, Photoluminescence study of silicon solar cells irradiated with large fluence electrons or protons. Radiat. Phys. Chem. 53, 25 (1998). https://doi.org/10.1016/j.nima.2013.04.080.

    Article  CAS  Google Scholar 

  12. I. Kovačević, and B. Pivac, Defect production in γ-irradiated silicon at different temperatures. Vacuum 80, 223 (2005). https://doi.org/10.1016/j.vacuum.2005.08.002.

    Article  CAS  Google Scholar 

  13. H. Yeritsyan, A. Sahakyan, N. Grigoryan, V. Harutyunyan, V. Arzumanyan, V. Tsakanov, B. Grigoryan, G. Amatuni, and C.J. Rhodes, Introduction rates of radiation defects in electron irradiated semiconductor crystals of n-Si and n-GaP. Radiat. Phys. Chem. 176, 109056 (2020). https://doi.org/10.1016/j.radphyschem.2020.109056.

    Article  CAS  Google Scholar 

  14. C. Leroy, and P.-G. Rancoita, Particle interaction and displacement damage in silicon devices operated in radiation environments. Rep. Prog. Phys. 70, 493 (2007).

    Article  CAS  Google Scholar 

  15. M. Kuhnke, E. Fretwurst, and G. Lindstroem, Defect generation in crystalline silicon irradiated with high energy particles. Nucl. Instrum. Methods Phys. Res. Sect. B 186, 144 (2002).

    Article  CAS  Google Scholar 

  16. I. Smirnov, I. Dyachkova, and E. Novoselova, High resolution X-ray diffraction study of proton irradiated silicon crystals. Mod. Electron. Mater. 2, 29 (2016).

    Article  Google Scholar 

  17. Y. Funtikov, L. Dubov, Y. Shtotsky, and S. Stepanov, Radiation-induced defects in Si after high dose proton irradiation. Defect Diffus. Forum 373, 209 (2017).

    Article  Google Scholar 

  18. V.V. Kozlovski, A.E. Vasilev, and A.A. Lebedev, Effect of recoil atoms on radiation-defect formation in semiconductors under 1–10-MeV proton irradiation. J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 10, 693 (2016). https://doi.org/10.1134/S1027451016020294.

    Article  CAS  Google Scholar 

  19. T. Pagava and L. Chkhartishvili, Radiation defects nano-scale inhomogeneous distribution influence on apparent hall mobility in silicon. Nano Res Appl. 03(03) (2017).

  20. N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Modelling of disordering regions in proton-irradiated silicon. J. Phys. Conf. Ser. 1553, 012015 (2020).

    Article  CAS  Google Scholar 

  21. H. Yeritsyan, A. Sahakyan, N. Grigoryan, V. Harutunyan, V. Sahakyan, and A. Khachatryan, Clusters of radiation defects in silicon crystals. J. Mod. Phys. 6, 1270 (2015).

    Article  CAS  Google Scholar 

  22. P.F. Lugakov, and I.M. Filippov, Radiation defect clusters in electron-irradiated silicon. Radiat. Eff. 90, 297 (1985).

    Article  CAS  Google Scholar 

  23. R. Radu, I. Pintilie, L.C. Nistor, E. Fretwurst, G. Lindstroem, and L.F. Makarenko, Investigation of point and extended defects in electron irradiated silicon-dependence on the particle energy. J. Appl. Phys. 117, 164503 (2015). https://doi.org/10.1063/1.4918924.

    Article  CAS  Google Scholar 

  24. H. Yeritsyan, A. Sahakyan, N. Grigoryan, E. Hakhverdyan, V. Harutunyan, V. Sahakyan, A. Khachatryan, B. Grigoryan, V. Avagyan, G. Amatuni, and A. Vardanyan, The influence of pico-second pulse electron irradiation on the electrical-physical properties of silicon crystals. J. Mod. Phys. 7, 1413 (2016). https://doi.org/10.4236/jmp.2016.712128.

    Article  CAS  Google Scholar 

  25. N. Bogatov, L. Grigoryan, A. Klenevsky, M. Kovalenko, and I. Nesterenko, Formation of primary radiation defects in a non-equilibrium silicon structure by electron irradiation. J. Phys. Conf. Ser. 1679, 032077 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by the Science Committee of the Ministry of Education, Science, Culture and Sports of the Republic of Armenia in the frameworks of Projects №21T-2F094 and №21AA-1C012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vika Arzumanyan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, V., Sahakyan, A., Manukyan, A. et al. Introduction Rates of Electrically Active Radiation Defects in Proton Irradiated n-Type and p-Type Si Monocrystals. J. Electron. Mater. 52, 7861–7868 (2023). https://doi.org/10.1007/s11664-023-10700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10700-7

Keywords

Navigation