Skip to main content
Log in

Effects of Substrate Bias Voltage on Structural and Optical Properties of Co-Sputtered (AlxGa1–x)2O3 Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Doping of β-Ga2O3 with Al atoms provides an effective approach for further enlargement of the energy bandgap, and enhanced detection in the deep ultraviolet region. Although Al-doped β-Ga2O3 films have been prepared with various methods, challenges remain in the adjustment of crystal quality to obtain superior properties. In this paper, (AlxGa1–x)2O3 (denoted as AGO) films were deposited by magnetron co-sputtering at different bias voltages and annealed at 900°C in air. The dependence of the crystal structure, morphology, and optical properties of the films on bias voltage was investigated. The AGO films exhibit a preferred orientation in the (\(\overline{2}\) 01) plane at various biases, as evidenced by the x-ray diffraction measurements. The films with various bias voltages yield higher crystal quality with optical bandgap of about 5.0 eV. In addition, the AGO films demonstrate 95% absolute average transmittance in the UV-Vis wavelength range. This method thus opens a new way for controlling the quality and properties of AGO films with bias.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Zhu, L. Xiong, J. Si, Z. Hu, X. Gao, L. Long, T. Li, R. Wan, L. Zhang, and L. Wang, Influence of deposition temperature on amorphous Ga2O3 solar-blind ultraviolet photodetector. Semicond. Sci. Technol. 35, 055037 (2020). https://doi.org/10.1088/1361-6641/ab6ac1.

    Article  CAS  Google Scholar 

  2. J. Wang, L. Ye, X. Wang, H. Zhang, L. Li, C. Kong, and W. Li, High transmittance β- Ga2O3 thin films deposited by magnetron sputtering and post-annealing for solar-blind ultraviolet photodetector. J. Alloys Compd. 803, 9–15 (2019). https://doi.org/10.1016/j.jallcom.2019.06.224.

    Article  CAS  Google Scholar 

  3. T. Kamimura, K. Sasaki, M. Hoi-Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions. Appl. Phys. Lett. 104, 192104 (2014). https://doi.org/10.1063/1.4876920.

    Article  CAS  Google Scholar 

  4. X.C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y.H. An, X.L. Chu, L.H. Li, P.G. Li, M. Lei, and W.H. Tang, β-Ga2O3/p -Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. J. Alloys Compd. 660, 136–140 (2016). https://doi.org/10.1016/j.jallcom.2015.11.145.

    Article  CAS  Google Scholar 

  5. M. Orita, H. Ohta, M. Hirano, and H. Hosono, Deep-ultraviolet transparent conductive -Ga2O3 thin films. Appl. Phys. Lett. 77, 25 (2000). https://doi.org/10.1063/1.1330559.

    Article  Google Scholar 

  6. M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi-Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013). https://doi.org/10.1063/1.4821858.

    Article  CAS  Google Scholar 

  7. Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, (AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity. Opt. Mater. Express. 7, 1240 (2017). https://doi.org/10.1364/OME.7.001240.

    Article  CAS  Google Scholar 

  8. Z. Hu, Q. Feng, J. Zhang, F. Li, X. Li, Z. Feng, C. Zhang, and Y. Hao, Optical properties of (AlxGa1−x)2O3 on sapphire. Superlattices Microstruct. 114, 82–88 (2018). https://doi.org/10.1016/j.spmi.2017.12.013.

    Article  CAS  Google Scholar 

  9. S. Kim, H. Ryou, I.G. Lee, M. Shin, and W.S. Hwang, Impact of Al doping on a hydrothermally synthesized β-Ga2O3 nanostructure for photocatalysis applications. RSC Adv. 11, 7338–7346 (2021). https://doi.org/10.1039/D1RA00021G.

    Article  CAS  Google Scholar 

  10. Y. Nie, S. Jiao, F. Meng, H. Lu, D. Wang, L. Li, S. Gao, J. Wang, and X. Wang, Growth and properties analysis of AlxGa2-xO3 thin film by radio frequency magnetron sputtering using Al/Ga2O3 target. J. Alloys Compd. 798, 568–575 (2019). https://doi.org/10.1016/j.jallcom.2019.05.268.

    Article  CAS  Google Scholar 

  11. F. Zhang, C. Hu, M. Arita, K. Saito, T. Tanaka, and Q. Guo, Low temperature growth of (AlGa)2O3 films by oxygen radical assisted pulsed laser deposition. CrystEngComm 22, 142–146 (2020). https://doi.org/10.1039/C9CE01541H.

    Article  CAS  Google Scholar 

  12. S.-D. Lee, Y. Ito, K. Kaneko, and S. Fujita, Enhanced thermal stability of alpha gallium oxide films supported by aluminum doping. Jpn. J. Appl. Phys. 54, 030301 (2015). https://doi.org/10.7567/JJAP.54.030301.

    Article  CAS  Google Scholar 

  13. W. Hu, S. Li, Y. Hu, L. Wan, S. Jiao, W. Hu, D.N. Talwar, Z.C. Feng, T. Li, J. Xu, L. Wei, and W. Guo, Optical and electronic properties of (AlxGa1−x)2O3/Al2O3 (x>04) films grown by magnetron sputtering. J. Alloys Compd. 864, 158765 (2021). https://doi.org/10.1016/j.jallcom.2021.158765.

    Article  CAS  Google Scholar 

  14. P.-W. Chen, S.-Y. Huang, C.-C. Wang, S.-H. Yuan, and D.-S. Wuu, Influence of oxygen on sputtering of aluminum-gallium oxide films for deep-ultraviolet detector applications. J. Alloys Compd. 791, 1213–1219 (2019). https://doi.org/10.1016/j.jallcom.2019.03.339.

    Article  CAS  Google Scholar 

  15. X. Sun, K. Gao, X. Pang, and H. Yang, Interface and strain energy revolution texture map to predict structure and optical properties of sputtered PbSe thin films. ACS Appl. Mater. Interfaces. 8, 625–633 (2016). https://doi.org/10.1021/acsami.5b09724.

    Article  CAS  Google Scholar 

  16. S.-H. Yuan, C.-C. Wang, S.-Y. Huang, and D.-S. Wuu, Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum. IEEE Electron Device Lett. 39, 220–223 (2018). https://doi.org/10.1109/LED.2017.2782693.

    Article  Google Scholar 

  17. C.-C. Wang, S.-H. Yuan, S.-L. Ou, S.-Y. Huang, K.-Y. Lin, Y.-A. Chen, P.-W. Hsiao, and D.-S. Wuu, Growth and characterization of co-sputtered aluminum-gallium oxide thin films on sapphire substrates. J. Alloys Compd. 765, 894–900 (2018). https://doi.org/10.1016/j.jallcom.2018.06.270.

    Article  CAS  Google Scholar 

  18. C. He, J. Zhang, G. Ma, Z. Du, J. Wang, and D. Zhao, Influence of bias voltage on structure, mechanical and corrosion properties of reactively sputtered nanocrystalline TiN films. J. Iron Steel Res. Int. 24, 1223–1230 (2017). https://doi.org/10.1016/S1006-706X(18)30021-9.

    Article  Google Scholar 

  19. H. Wang, S. Zhang, Y. Li, and D. Sun, Bias effect on microstructure and mechanical properties of magnetron sputtered nanocrystalline titanium carbide thin films. Thin Solid Films 516, 5419–5423 (2008). https://doi.org/10.1016/j.tsf.2007.07.022.

    Article  CAS  Google Scholar 

  20. I. Ahmad, S.S. Roy, P.D. Maguire, P. Papakonstantinou, and J.A. McLaughlin, Effect of substrate bias voltage and substrate on the structural properties of amorphous carbon films deposited by unbalanced magnetron sputtering. Thin Solid Films 482, 45–49 (2005). https://doi.org/10.1016/j.tsf.2004.11.158.

    Article  CAS  Google Scholar 

  21. T. Oshima, T. Okuno, and S. Fujita, Ga2O3 Thin film growth on c -plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn. J. Appl. Phys. 46, 7217–7220 (2007). https://doi.org/10.1143/JJAP.46.7217.

    Article  CAS  Google Scholar 

  22. S. Li, S. Jiao, D. Wang, S. Gao, and J. Wang, The influence of sputtering power on the structural, morphological and optical properties of β-Ga2O3 thin films. J. Alloys Compd. 753, 186–191 (2018). https://doi.org/10.1016/j.jallcom.2018.04.196.

    Article  CAS  Google Scholar 

  23. A. Goyal, B.S. Yadav, O.P. Thakur, A.K. Kapoor, and R. Muralidharan, Effect of annealing on β-Ga2O3 film grown by pulsed laser deposition technique. J. Alloys Compd. 583, 214–219 (2014). https://doi.org/10.1016/j.jallcom.2013.08.115.

    Article  CAS  Google Scholar 

  24. F. Zhang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, Wide bandgap engineering of (AlGa)2O3 films. Appl. Phys. Lett. 105, 162107 (2014). https://doi.org/10.1063/1.4900522.

    Article  CAS  Google Scholar 

  25. H. Peelaers, J.B. Varley, J.S. Speck, and C.G. Van de Walle, Structural and electronic properties of Ga2O3-Al2O3 alloys. Appl. Phys. Lett. 112, 242101 (2018). https://doi.org/10.1063/1.5036991.

    Article  CAS  Google Scholar 

  26. X. Wang, Z. Chen, F. Zhang, K. Saito, T. Tanaka, M. Nishio, and Q. Guo, Temperature dependence of Raman scattering in β-(AlGa)2O3 thin films. AIP Adv. 6, 015111 (2016). https://doi.org/10.1063/1.4940763.

    Article  CAS  Google Scholar 

  27. C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, Raman tensor elements of β-Ga2O3. Sci Rep. 6, 35964 (2016). https://doi.org/10.1038/srep35964.

    Article  CAS  Google Scholar 

  28. M. Ohring, Materials science of thin films, 2nd ed., (New York: Academic Press, 2002).

    Google Scholar 

  29. J.-E. Sundgren, Structure and properties of TiN coatings. Thin Solid Films 128, 21–44 (1985). https://doi.org/10.1016/0040-6090(85)90333-5.

    Article  CAS  Google Scholar 

  30. J. Tauc, R. Grigorovici, and A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. (b) 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224.

    Article  CAS  Google Scholar 

  31. A. Ratnaparkhe, and W.R.L. Lambrecht, Quasiparticle self-consistent GW study of (Ga1−xAlx)2O3 Alloys in monoclinic and corundum structures. Phys. Stat. Sol. 257, 1900317 (2019). https://doi.org/10.1002/pssb.201900317.

    Article  CAS  Google Scholar 

  32. N. Kaur and S.K. Sharma, Deuk Young kim, Stress relaxation and transitions in optical bandgap of yttrium doped n zinc oxide (YZO) thin films. Curr. Appl. Phys. 16, 231–239 (2016). https://doi.org/10.1016/j.cap.2015.12.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenran Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Dong, H., Zhang, X. et al. Effects of Substrate Bias Voltage on Structural and Optical Properties of Co-Sputtered (AlxGa1–x)2O3 Films. J. Electron. Mater. 52, 7429–7437 (2023). https://doi.org/10.1007/s11664-023-10673-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10673-7

Keywords

Navigation