Skip to main content
Log in

Passivation of InSb and HgCdTe Infrared Photodiodes by Polycrystalline CdTe

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mid-wavelength InSb and HgCdTe photodiodes (PDs) passivated with polycrystalline CdTe films have been studied. Passivating layers were deposited at low temperatures by the hot-wall epitaxy (HWE) technique. The PDs were characterized by measurements of the dark current and minority carrier lifetime. It is shown that heterovalent and isovalent (CdTe/InSb and CdTe/HgCdTe) interfaces have different effects on the PD characteristics. Passivation of HgCdTe does not affect the lifetime of the carriers, but the stability of the dark current in passivated PDs is insufficient for long-term operation. In the InSb PDs, the processing steps, including successive etching in CP4A and HCl etchants, sulfidization in an aqueous solution of Na2S, followed by the deposition of a protective CdTe layer, led to the best result. It has been established that the electrical properties of the passivating layers of polycrystalline CdTe are determined by the space charge-limited current. Conclusions are drawn about the applicability of the HWE technique for the passivation of infrared photodetectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors, 2nd ed., (Boca Raton, CRC Press, Taylor & Francis Group, 2011).

    Google Scholar 

  2. A. Rogalski, Mid-infrared Optoelectronics. Materials, Devices, and Applications. ed. L. Tournié, and L. Cerutti (Duxford: Woodhead Publishing, 2020).

    Google Scholar 

  3. P. Zhang, Z. Ye, C. Sun, Y. Chen, T. Zhang, X. Chen, C. Lin, R. Ding, and L. He, Passivation effect of atomic layer deposition of Al2O3 film on HgCdTe infrared detectors. J. Electron. Mater. 45, 4716 (2016).

    Article  CAS  Google Scholar 

  4. E. Tournié and L. Cerutti, Mid-infrared Optoelectronics: Materials, Devices, and Applications (Oxford: Woodhead Publishing, 2019).

    Google Scholar 

  5. L. Mangin, F. Rochette, C. Lobre, P. Ballet, P. Duvaut, A. Chorier, B. Polge, J.L. Santailler, and G. Ghibaudo, Analysis of the electrical properties of different HgCdTe passivations for infrared detectors. J. Electron. Mater. 48, 6084 (2019).

    Article  CAS  Google Scholar 

  6. R. Singh, A.K. Gupta, and K.C. Chhahra, Surface passivation of mercury-cadmium-telluride infrared detectors. Def. Sci. J. 41, 205 (1991).

    Article  CAS  Google Scholar 

  7. O.P. Agnihotri, C.A. Musca, and L. Faraone, Current status and issues in the surface passivation technology of mercury cadmium telluride infrared detectors. Semicond. Sci. Technol. 13, 839 (1998).

    Article  CAS  Google Scholar 

  8. Q. Liu, X. Zhang, L.B. Abdalla, and A. Zunger, Transforming common III–V and II–VI semiconductor compounds into topological heterostructures: the case of CdTe/InSb superlattices. Adv. Funct. Mater. 26, 3259 (2016).

    Article  CAS  Google Scholar 

  9. J. Li, C. Tang, Du. Peng, Y. Jiang, Y. Zhang, X. Zhao, Q. Gong, and X. Kou, Epitaxial growth of lattice-matched InSb/CdTe heterostructures on the GaAs (111) substrate by molecular beam epitaxy. Appl. Phys. Lett. 116, 122102 (2020).

    Article  CAS  Google Scholar 

  10. V.V. Tetyorkin, A.V. Sukach, and A.I. Tkachuk, Dark current and 1/f noise in forward biased InAs photodiodes. Semicond. Phys. Quantum Electron. Optoelectron. 24(4), 466 (2021).

    Article  Google Scholar 

  11. W.K. Liu, W.T. Yuen, and R.A. Stradling, Preparation of InSb substrates for molecular beam epitaxy. J. Vac. Sci. Technol. B 13, 1539 (1995).

    Article  CAS  Google Scholar 

  12. C.J. Sandroff, R.N. Nottenburg, J.C. Bischoff, and R. Bhat, Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation. Appl. Phys. Lett. 51, 33 (1987).

    Article  CAS  Google Scholar 

  13. B.K. Cha, K. Yang, E.S. Cha, S.M. Yong, D. Heo, R.K. Kim, S. Jeon, C.W. Seo, C.R. Kim, B.T. Ahn, and T.B. Lee, Structural and electrical properties of polycrystalline CdTe films for direct X-ray imaging detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 731, 320 (2013).

    Article  CAS  Google Scholar 

  14. N. El-Kadry, A. Ashour, and S.A. Mahmoud, Structural dependence of d.c. electrical properties of physically deposited CdTe thin films. Thin Solid Films 269, 112 (1995).

    Article  CAS  Google Scholar 

  15. Z. Tsybrii, M. Vuichyk, K. Svezhentsova, M. Smolii, Y. Gomeniuk, A. Nazarov, and F. Sizov, Low-temperature growth of CdTe thin films as passivation layers for IR and THz functional elements. Mater. Chem. Phys. 278, 125581 (2022).

    Article  CAS  Google Scholar 

  16. M.A. Lampert and P. Mark, Current Injection in Solids (New York: Academic Press, 1970).

    Google Scholar 

  17. K.C. Kao and W. Hwang, Electrical Transport in Solids. With Particular Reference to Organic Semiconductors (Oxford: Pergamon Press, 1981).

    Google Scholar 

  18. S.M. Sze, Y. Li, and K.K. Ng, Physics of Semiconductor Devices, 3rd ed., (Hoboken: Wiley, 2007).

    Google Scholar 

  19. V. Gopal, N. Gautam, E. Plis, and S. Krishna, Modelling of current-voltage characteristics of infrared photo-detectors based on type—II InAs/GaSb super-lattice diodes with unipolar blocking layers. AIP Adv. 5, 097132 (2015).

    Article  Google Scholar 

  20. S. Dongaonkar, J.D. Servaites, G.M. Ford, S. Loser, J. Moore, R.M. Gelfand, H. Mohseni, H.W. Hillhouse, R. Agrawal, M.A. Ratner, T.J. Marks, M.S. Lundstrom, and M.A. Alam, Universality of non-Ohmic shunt leakage in thin-film solar cells. J. Appl. Phys. 108, 124509 (2010).

    Article  Google Scholar 

  21. T.J. McMahon, T.J. Berniard, and D.S. Albin, Nonlinear shunt paths in thin-film CdTe solar cells. J. Appl. Phys. 97, 054503 (2005).

    Article  Google Scholar 

  22. P. Perlin, M. Osiński, P.G. Eliseev, V.A. Smagley, J. Mu, M. Banas, and P. Sartori, Low-temperature study of current and electroluminescence in InGaN/AlGaN/GaN double-structure blue light-emitting diodes. Appl. Phys. Lett. 69, 1680 (1996).

    Article  CAS  Google Scholar 

  23. D.K. Schroder, Semiconductor Material and Device Characterization (Hoboken: Wiley, 2008).

    Google Scholar 

  24. J. Reichman, Minority carrier lifetime of CdHgTe from photoconductivity decay method. Appl. Phys. Lett. 59, 1221 (1991).

    Article  CAS  Google Scholar 

  25. S. Krishnamurthy, M.A. Berding, and Z.G. Yu, Minority carrier lifetimes in HgCdTe alloys. J. Electron. Mater. 35, 1369 (2006).

    Article  CAS  Google Scholar 

  26. J.E. Hollis, C. Choo, and E.L. Heasell, Recombination centers in InSb. J. Appl. Phys. 35, 1626 (1967).

    Article  Google Scholar 

  27. J. Lu, M.J. DiNezza, X.H. Zhao, S. Liu, Y.H. Zhang, A. Kovacs, R.E. Dunin-Borkowski, and D.J. Smith, Towards defect-free epitaxial CdTe and MgCdTe layers grown on InSb (001) substrates. J. Cryst. Growth 439, 99 (2016).

    Article  CAS  Google Scholar 

  28. B.S. McKeon, X. Liu, J.K. Furdyna, and D.J. Smith, Atomic-resolution structure imaging of misfit dislocations at heterovalent II−VI/III−V interfaces. ACS Appl. Electron. Mater. 3, 2573 (2021).

    Article  CAS  Google Scholar 

  29. P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Applications (Hoboken: Wiley, 2011).

    Google Scholar 

  30. I.M. Baker and C.D. Maxey, Summary of HgCdTe 2D array technology in the U.K. J. Electron. Mater. 30(6), 682 (2001).

    Article  CAS  Google Scholar 

  31. A. Sher, M.A. Berding, and M. van Schilfgaarde, An-Ban Chen, HgCdTe status review with emphasis on correlations, native defects and diffusion. Semicond. Sci. Technol. 6, C59 (1991).

    Article  CAS  Google Scholar 

  32. S.M. Johnson, D.R. Rhiger, J.P. Rosbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, Effect of dislocations on the electrical and optical properties of long wavelength infrared HgCdTe photovoltaic detectors. J. Vac. Sci. Technol. B 10, 1499 (1992).

    Article  CAS  Google Scholar 

  33. M. Yoshikawa, K. Maruyama, T. Saito, T. Maekawa, and H. Takigawa, Dislocations in HgCdTe/CdTe and HgCdTe/CdZnTe heterojunctions. J. Vac. Sci. Technol. A 5, 3052 (1987).

    Article  CAS  Google Scholar 

  34. S.Y. An, J.S. Kim, D.W. Seo, and S.H. Suh, Passivation of HgCdTe p-n diode junction by compositionally graded HgCdTe formed by annealing in a Cd/Hg atmosphere. J. Electron. Mater. 31, 683 (2002).

    Article  CAS  Google Scholar 

  35. M. Jaime-Vasquez, M. Martinka, A.J. Stoltz, R.N. Jacobs, J.D. Benson, L.A. Almeida, and J.K. Markunas, Plasma-cleaned InSb (112) for large-area epitaxy of HgCdTe sensors. J. Electron. Mater. 37, 1247 (2008).

    Article  CAS  Google Scholar 

  36. J. Garland and R. Sporken, in Mercury Cadmium Telluride: Growth, Properties and Applications, ed. by P. Capper, J. Garland (Wiley, 2011), p. 88.

  37. A. Zemel, I. Lukomsky, and E. Weiss, Mechanism of carrier transport across the junction of narrow band-gap planar n+p HgCdTe photodiodes grown by liquid-phase epitaxy. J. Appl. Phys. 98, 054504 (2005).

    Article  Google Scholar 

Download references

Funding

This work was partly funded by the NAS of Ukraine, project No. 0123U100458X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Svezhentsova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tetyorkin, V., Tsybrii, Z., Tkachuk, A. et al. Passivation of InSb and HgCdTe Infrared Photodiodes by Polycrystalline CdTe. J. Electron. Mater. 52, 7337–7345 (2023). https://doi.org/10.1007/s11664-023-10671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10671-9

Keywords

Navigation