Skip to main content
Log in

Ultrathin GaN Crystal Realized Through Nitrogen Substitution of Layered GaS

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

GaN has been demonstrated as an important wide-bandgap semiconductor in many applications, especially in optoelectronic and high-power electronics. Two-dimensional (2D) GaN, with increased bandgap compared to the bulk counterpart, not only amplifies existing functionalities but also opens up fresh possibilities for compact electronics. Although several methods have recently been developed to synthesize 2D GaN, their practical application is hampered by either harsh growth conditions (e.g., high temperature and ultrahigh vacuum) or unsatisfactory performance due to grain boundaries. Here, we report the realization of few-nanometer-thick GaN crystals via in situ atomic substitution of layered GaS flakes at a relatively low temperature (590°C). GaN with tunable thickness from 50 nm down to 0.9 nm (~2 atomic layers) is achieved by applying the atomic substitution reaction to GaS with different numbers of layers. The obtained ultrathin GaN flakes retain the morphology inherited from the GaS flakes and show high crystallinity by transmission electron microscopy (TEM) characterization, while the thickness of GaN decreases to about 72% of the corresponding GaS flakes from the atomic force microscopy characterization. A time-dependent mechanism study reveals both horizontal and vertical conversion paths, with Ga2S3 as intermediate. Photoluminescence (PL) spectroscopy measurements show that the band edge PL of 2D ultrathin GaN is blue-shifted as compared with bulk GaN, suggesting that the bandgap increases with the decrease in thickness. This study provides a promising method for obtaining ultrathin, high-crystallinity GaN with tunable thicknesses, utilizing a minimal thermal budget. This breakthrough lays a solid foundation for future investigations into fundamental physics and potential device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201 (2005).

    Article  CAS  Google Scholar 

  2. X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346(6215), 1344 (2005).

    Article  Google Scholar 

  3. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).

    Article  CAS  Google Scholar 

  4. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  5. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  6. K.S. Novoselov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  7. S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 8 (2010).

    Article  Google Scholar 

  8. Y. Hao, Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff, The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720 (2013).

    Article  CAS  Google Scholar 

  9. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima, Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett. 75, 3918 (1995).

    Article  CAS  Google Scholar 

  10. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966 (2012).

    Article  CAS  Google Scholar 

  11. H. Liu, M. Si, S. Najmaei, A.T. Neal, Y. Du, P.M. Ajayan, J. Lou, and P.D. Ye, Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett. 13, 2640 (2013).

    Article  CAS  Google Scholar 

  12. C.J. Carmalt, I.P. Parkin, and E.S. Peters, Atmospheric pressure chemical vapour deposition of WS2 thin films on glass. Polyhedron 22, 1499 (2003).

    Article  CAS  Google Scholar 

  13. M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992 (2014).

    Article  CAS  Google Scholar 

  14. J. Mannix, X.F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, and N.P. Guisinger, Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513 (2015).

    Article  CAS  Google Scholar 

  15. Z.Y. Al Balushi, K. Wang, R.K. Ghosh, R.A. Vilá, S.M. Eichfeld, J.D. Caldwell, X.E. Qin, Y.C. Lin, P.A. DeSario, G. Stone, S. Subramanian, D.F. Paul, R.M. Wallace, S. Datta, J.M. Redwing, and J.A. Robinson, Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166 (2016).

    Article  CAS  Google Scholar 

  16. A. Zavabeti, J.Z. Ou, B.J. Carey, N. Syed, R. Orrell-Trigg, E.L.H. Mayes, C. Xu, O. Kavehei, A.P. O’Mullane, R.B. Kaner, K. Kalantar-zadeh, and T. Daeneke, A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 358, 332 (2017).

    Article  CAS  Google Scholar 

  17. N. Syed, A. Zavabeti, K.A. Messalea, E.D. Gaspera, A. Elbourne, A. Jannat, M. Mohiuddin, B.Y. Zhang, G. Zheng, L. Wang, S.P. Russo, D. Esrafilzadeh, C.F. McConville, K. Kalantar-Zadeh, and T. Daeneke, Wafer-sized ultrathin gallium and indium nitride nanosheets through the ammonolysis of liquid metal derived oxides. J. Am. Chem. Soc. 141, 104 (2019).

    Article  CAS  Google Scholar 

  18. Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei, T. Zhang, M. Zeng, Z. Wang, and L. Fu, Growth of 2D GaN single crystals on liquid metals. J. Am. Chem. Soc. 140, 16392 (2018).

    Article  CAS  Google Scholar 

  19. J. Cao, T. Li, H. Gao, Y. Lin, X. Wang, H. Wang, T. Palacios, and X. Ling, Realization of 2D crystalline metal nitrides via selective atomic substitution. Sci. Adv. 6, eaax8784 (2020).

    Article  CAS  Google Scholar 

  20. H.L. Zhuang, A.K. Singh, and R.G. Hennig, Computational discovery of single-layer III–V materials. Phys. Rev. B 87, 165415 (2013).

    Article  Google Scholar 

  21. A.K. Singh and R.G. Hennig, Computational synthesis of single-layer gan on refractory materials. Appl. Phys. Lett. 105, 051604 (2014).

    Article  Google Scholar 

  22. C.L. Freeman, F. Claeyssens, N.L. Allan, and J.H. Harding, Graphitic nanofilms as precursors to wurtzite films: theory. Phys. Rev. Lett. 96, 066102 (2006).

    Article  Google Scholar 

  23. L.E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984).

    Article  CAS  Google Scholar 

  24. J.W. Chung, W.E. Hoke, E.M. Chumbes, and T. Palacios, AlGaN/GaN HEMT with 300-GHz fmax. IEEE Electron Device Lett. 31, 195 (2010).

    Article  CAS  Google Scholar 

  25. E. Aklimi, D. Piedra, K. Tien, T. Palacios, and K.L. Shepard, Hybrid CMOS/GaN 40-MHz maximum 20-V input DC–DC multiphase buck converter. IEEE J. Solid State Circuits 52, 1618 (2017).

    Article  Google Scholar 

  26. J.W. Chung, J. Lee, E.L. Piner, and T. Palacios, Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs. IEEE Electron Device Lett. 30, 1015 (2009).

    Article  CAS  Google Scholar 

  27. H.W. Then, S. Dasgupta, M. Radosavljevic, P. Agababov, I. Ban, R. Bristol, M. Chandhok, S. Chouksey, B. Holybee, C.Y. Huang, B. Krist, K. Jun, K. Lin, N. Nidhi,T. Michaelos, B. Mueller, R. Paul, J. Peck, W. Rachmady, D. Staines, T. Talukdar, N. Thomas, T. Tronic, P. Fischer, W. Hafez, 3D heterogeneous integration of high performance high-K Metal gate GaN NMOS and Si PMOS transistors on 300mm high-resistivity si substrate for energy-efficient and compact power delivery, RF (5G and beyond) and SoC applications, in 2019 IEEE International Electron Devices Meeting (IEDM) (2019), pp. 17.3.1–17.3.4.

  28. N. Sanders, D. Bayerl, G. Shi, K.A. Mengle, and E. Kioupakis, Electronic and optical properties of two-dimensional GaN from first-principles. Nano Lett. 17, 7345 (2017).

    Article  CAS  Google Scholar 

  29. T. Lei, M. Fanciulli, R.J. Molnar, T.D. Moustakas, R.J. Graham, and J. Scanlon, Epitaxial growth of zinc blende and wurtzitic gallium nitride thin films on (001) silicon. Appl. Phys. Lett. 59, 944 (1991).

    Article  CAS  Google Scholar 

  30. D. Doppalapudi, E. Iliopoulos, S.N. Basu, and T.D. Moustakas, Epitaxial growth of gallium nitride thin films on A-plane sapphire by molecular beam epitaxy. J. Appl. Phys. 85, 3582 (1999).

    Article  CAS  Google Scholar 

  31. S.M. Islam, K. Lee, J. Verma, V. Protasenko, S. Rouvimov, S. Bharadwaj, H.G. Xing, and D. Jena, MBE-grown 232–270 Nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl. Phys. Lett. 110, 041108 (2017).

    Article  Google Scholar 

  32. R. Yan, G. Khalsa, S. Vishwanath, Y. Han, J. Wright, S. Rouvimov, D.S. Katzer, N. Nepal, B.P. Downey, D.A. Muller, H.G. Xing, D.J. Meyer, and D. Jena, GaN/NbN epitaxial semiconductor/superconductor heterostructures. Nature 555, 183 (2018).

    Article  CAS  Google Scholar 

  33. S.J. Rosner, E.C. Carr, M.J. Ludowise, G. Girolami, and H.I. Erikson, Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett. 70, 420 (1997).

    Article  CAS  Google Scholar 

  34. H. Yoo, K. Chung, Y.S. Choi, C.S. Kang, K.H. Oh, M. Kim, and G.-C. Yi, Microstructures of GaN thin films grown on graphene layers. Adv. Mater. 24, 515 (2012).

    Article  CAS  Google Scholar 

  35. L. Liu and J.H. Edgar, Substrates for gallium nitride epitaxy. Mater. Sci. Eng. R Rep. 37, 61 (2002).

    Article  Google Scholar 

  36. G. Lian, The pros and cons of GaN family of materials compared with other alternatives regarding optoelectronic applications, in 2020 7th International Forum on Electrical Engineering and Automation (IFEEA) (2020), pp. 149–152.

  37. I.V. Zabrosaev, M.G. Kozodaev, R.I. Romanov, A.G. Chernikova, P. Mishra, N.V. Doroshina, A.V. Arsenin, V.S. Volkov, A.A. Koroleva, and A.M. Markeev, Field-effect transistor based on 2D microcrystalline MoS2 film grown by sulfurization of atomically layer deposited MoO3. Nanomaterials 12, 19 (2022).

    Article  Google Scholar 

  38. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).

    Article  CAS  Google Scholar 

  39. M. Vinet, P. Batude, C. Fenouillet-Beranger, F. Clermidy, L. Brunet, O. Rozeau, J. M Hartmannn, O. Billoint, G. Cibrario , B. Previtali, C. Tabone, B. Sklenard, O. Turkyilmaz, F. Ponthenier, N. Rambal, M.P. Samson, F. Deprat, V. Lu, L. Pasini, S. Thuries, H. Sarhan, J.E. Michallet, O. Faynot, Monolithic 3D integration: A powerful alternative to classical 2D scaling, in 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) (2014), pp. 1–3.

  40. M.M. Shulaker, T.F. Wu, M.M. Sabry, H. Wei, H.S.P. Wong, S. Mitra, Monolithic 3D integration: a path from concept to reality, in 2015 Design, Automation Test in Europe Conference Exhibition (DATE) (2015), pp. 1197–1202.

  41. D. Ruzmetov, K. Zhang, G. Stan, B. Kalanyan, G.R. Bhimanapati, S.M. Eichfeld, R.A. Burke, P.B. Shah, T.P. O’Regan, F.J. Crowne, A.G. Birdwell, J.A. Robinson, A.V. Davydov, and T.G. Ivanov, Vertical 2D/3D semiconductor heterostructures based on epitaxial molybdenum disulfide and gallium nitride. ACS Nano 10, 3580 (2016).

    Article  CAS  Google Scholar 

  42. J. Jiang, K. Parto, W. Cao, and K. Banerjee, Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878 (2019).

    Article  Google Scholar 

  43. S.-H. Bae, H. Kum, W. Kong, Y. Kim, C. Choi, B. Lee, P. Lin, Y. Park, and J. Kim, Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 6 (2019).

    Article  Google Scholar 

  44. X. Wang, Y. Sheng, R.J. Chang, J.K. Lee, Y. Zhou, S. Li, T. Chen, H. Huang, B.F. Porter, H. Bhaskaran, and J.H. Warner, Chemical vapor deposition growth of two-dimensional monolayer gallium sulfide crystals using hydrogen reduction of Ga2S3. ACS Omega 3, 7897 (2018).

    Article  CAS  Google Scholar 

  45. P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 13, 1649 (2013).

    Article  CAS  Google Scholar 

  46. M. Kumar, M.K. Rajpalke, B. Roul, T.N. Bhat, P. Misra, L.M. Kukreja, N. Sinha, A.T. Kalghatgi, and S.B. Krupanidhi, Temperature-dependent photoluminescence of GaN grown on β-Si3N4/Si (111) by plasma-assisted MBE. J. Lumin. 131, 614 (2011).

    Article  CAS  Google Scholar 

  47. E.J. Tarsa, B. Heying, X.H. Wu, P. Fini, S.P. DenBaars, and J.S. Speck, Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1997).

    Article  CAS  Google Scholar 

  48. V.-T. Rangel-Kuoppa, C.G. Aguilar, and V. Sánchez-Reséndiz, Structural, optical and electrical study of undoped GaN layers obtained by metalorganic chemical vapor deposition on sapphire substrates. Thin Solid Films 519, 2255 (2011).

    Article  CAS  Google Scholar 

  49. S. Hu, S. Liu, Z. Zhang, H. Yan, Z. Gan, and H. Fang, A novel MOCVD reactor for growth of high-quality GaN-related LED layers. J. Cryst. Growth 415, 72 (2015).

    Article  CAS  Google Scholar 

  50. Y. Zhang, Z. Chen, W. Li, A.R. Arehart, S.A. Ringel, and H. Zhao, Metalorganic chemical vapor deposition gallium nitride with fast growth rate for vertical power device applications. Phys. Status Solidi (A) 218, 2000469 (2021).

    Article  CAS  Google Scholar 

  51. L.T. Romano, J.E. Northrup, and M.A. O’Keefe, Inversion domains in GaN grown on sapphire. Appl. Phys. Lett. 69, 2394 (1996).

    Article  CAS  Google Scholar 

  52. R. Delgado Carrascon, S. Richter, M. Nawaz, P.P. Paskov, and V. Darakchieva, Hot-wall MOCVD for high-quality homoepitaxy of GaN: understanding nucleation and design of growth strategies. Cryst. Growth Des. 22, 7021 (2022).

    Article  CAS  Google Scholar 

  53. N.R. Glavin, K.D. Chabak, E.R. Heller, E.A. Moore, T.A. Prusnick, B. Maruyama, D.E. Walker Jr., D.L. Dorsey, Q. Paduano, and M. Snure, Flexible gallium nitride for high-performance, strainable radio-frequency devices. Adv. Mater. 29, 1701838 (2017).

    Article  Google Scholar 

  54. A.M. Berhane, K.Y. Jeong, Z. Bodrog, S. Fiedler, T. Schröder, N.V. Triviño, T. Palacios, A. Gali, M. Toth, D. Englund, and I. Aharonovich, Bright room-temperature single-photon emission from defects in gallium nitride. Adv. Mater. 29, 1605092 (2017).

    Article  Google Scholar 

  55. T. Honda, Y. Inao, K. Konno, K. Mineo, S. Kumabe, and H. Kawanishi, Deposition of amorphous GaN by compound source molecular beam epitaxy for electroluminescent devices. Phys. Status Solidi (A) 192, 461 (2002).

    Article  CAS  Google Scholar 

  56. C. Liu, Y.K. Ooi, S.M. Islam, H.G. Xing, D. Jena, and J. Zhang, 234 Nm and 246 Nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 112, 011101 (2018).

    Article  Google Scholar 

  57. C. Liu, Y.K. Ooi, S.M. Islam, J. Verma, H.G. Xing, D. Jena, and J. Zhang, Physics and polarization characteristics of 298 Nm AlN-Delta-GaN quantum well ultraviolet light-emitting diodes. Appl. Phys. Lett. 110, 071103 (2017).

    Article  Google Scholar 

  58. S.M. Islam, V. Protasenko, S. Rouvimov, H.G. Xing, and D. Jena, Sub-230 Nm deep-UV emission from GaN quantum disks in AlN grown by a modified Stranski–Krastanov mode. Jpn. J. Appl. Phys. 55, 05FF06 (2016).

    Article  Google Scholar 

  59. G. Santana, O. De Melo, J. Aguilar-Hernández, R. Mendoza-Pérez, B.M. Monroy, A. Escamilla-Esquivel, M. López-López, F. De Moure, L.A. Hernández, and G. Contreras-Puente, Photoluminescence study of gallium nitride thin films obtained by infrared close space vapor transport. Materials 6, 1050 (2013).

    Article  CAS  Google Scholar 

  60. H. Amano, Growth of GaN layers on sapphire by low-temperature-deposited buffer layers and realization of p-type GaN by magesium doping and electron beam irradiation (Nobel Lecture). Angew. Chem. Int. Ed. 54, 7764 (2015).

    Article  CAS  Google Scholar 

  61. P. Chen, R. Zhang, Z.M. Zhao, D.J. Xi, B. Shen, Z.Z. Chen, Y.G. Zhou, S.Y. Xie, W.F. Lu, and Y.D. Zheng, Growth of high quality GaN layers with AlN buffer on Si(111) substrates. J. Cryst. Growth 225, 150 (2001).

    Article  CAS  Google Scholar 

  62. Y. Feng, X. Yang, Z. Zhang, D. Kang, J. Zhang, K. Liu, X. Li, J. Shen, F. Liu, T. Wang, P. Ji, F. Xu, N. Tang, T. Yu, X. Wang, D. Yu, W. Ge, and B. Shen, GaN-on-Si(100): epitaxy of single-crystalline GaN film on CMOS-compatible Si(100) substrate buffered by graphene. Adv. Funct. Mater. 29, 1970293 (2019).

    Article  CAS  Google Scholar 

  63. Z. Qin, G. Qin, X. Zuo, Z. Xiong, and M. Hu, Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study. Nanoscale 9, 4295 (2017).

    Article  CAS  Google Scholar 

  64. Y. Zheng, X. Tang, W. Wang, L. Jin, and G. Li, Large-size ultrathin α-Ga2S3 nanosheets toward high-performance photodetection. Adv. Funct. Mater. 31, 2008307 (2021).

    Article  CAS  Google Scholar 

  65. K. Eriguchi, C. Biaou, S. Das, K.M. Yu, J. Wu, and O.D. Dubon, Temperature-dependent growth of hexagonal and monoclinic gallium sulfide films by pulsed-laser deposition. AIP Adv. 10, 105215 (2020).

    Article  CAS  Google Scholar 

  66. M. Grodzicki, J.-G. Rousset, P. Ciechanowicz, E. Piskorska-Hommel, and D. Hommel, XPS studies on the role of arsenic incorporated into GaN. Vacuum 167, 73 (2019).

    Article  CAS  Google Scholar 

  67. D.M. Hofmann, B.K. Meyer, H. Alves, F. Leiter, W. Burkhard, N. Romanov, Y. Kim, J. Krüger, and E.R. Weber, The red (1.8 EV) luminescence in epitaxially grown GaN. Phys. Status Solidi (A) 180, 261 (2000).

    Article  CAS  Google Scholar 

  68. Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelaers, D.E. Aspnes, C.G. Van de Walle, N.V. Nguyen, Y.W. Zhang, and L. Cao, Exciton-dominated dielectric function of atomically thin MoS2 films. Sci. Rep. 5, 1 (2015).

    Article  Google Scholar 

  69. G.Y. Jia, Y. Liu, J.Y. Gong, D.Y. Lei, D.L. Wang, and Z.X. Huang, Excitonic quantum confinement modified optical conductivity of monolayer and few-layered MoS2. J. Mater. Chem. C 4, 8822 (2016).

    Article  CAS  Google Scholar 

  70. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363 (1994).

    Article  Google Scholar 

  71. L. Mallet-Dida, P. Disseix, F. Réveret, F. Médard, B. Alloing, J. Zúñiga-Pérez, and J. Leymarie, The Low temperature limit of the excitonic mott density in GaN: an experimental reassessment. New J. Phys. 24, 033031 (2022).

    Article  Google Scholar 

  72. D.K. Lewis and S. Sharifzadeh, Defect-induced exciton localization in bulk gallium nitride from many-body perturbation theory. Phys. Rev. Mater. 3, 114601 (2019).

    Article  CAS  Google Scholar 

  73. M.T. Hibberd, V. Frey, B.F. Spencer, P.W. Mitchell, P. Dawson, M.J. Kappers, R.A. Oliver, C.J. Humphreys, and D.M. Graham, Dielectric response of wurtzite gallium nitride in the terahertz frequency range. Solid State Commun. 247, 68 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is primarily supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0021064. X.L. and J.C. also acknowledge the support of Semiconductor Research Cooperation (SRC) under Award S4994. Work by W.J.L. and X.L. was supported by the National Science Foundation (NSF) under Grant No. (1945364). X.L. acknowledges the membership of the Photonics Center at Boston University. H.Z.G. acknowledges the support of a BUnano Cross-Disciplinary Fellowship. P.T. acknowledges the National Natural Science Foundation of China (Grant No. 11874350) and CAS Key Research Program of Frontier Sciences (Grant No. ZDBS-LY-SLH004). Some of the TEM imaging was performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664. QM acknowledges support from the NSF Career program (award number DMR-2143426) and the CIFAR Azrieli Global Scholars program. We acknowledge Dr. X. An and Dr. B. M. Reinhard for help with SEM and EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Ling.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2453 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Li, T., Gao, H. et al. Ultrathin GaN Crystal Realized Through Nitrogen Substitution of Layered GaS. J. Electron. Mater. 52, 7554–7565 (2023). https://doi.org/10.1007/s11664-023-10670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10670-w

Keywords

Navigation