Skip to main content
Log in

Modulation Transfer Function Measurements by Electron-Beam-Induced Current of HgCdTe Planar Diode with Small Pitch and High Operating Temperature

  • Topical Collection: 2022 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Planar diodes usually present a potentially degraded modulation transfer function (MTF) for small pixels due to lateral diffusion of photo-generated carriers in the absorption layer. Indeed, in such a configuration, there is no physical separation between adjacent pixels, and when dealing with high operating temperature (HOT), the diffusion length might be much longer than the pixel size due to the long lifetime required for small dark current. For the p-on-n HgCdTe (MCT) diodes performed at LETI-Lynred, this diffusion length is much larger than the pixel pitch targeted at 7.5 µm. MTF optimization is therefore necessary to obtain the full image resolution targeted by the pitch array. However, MTF characterization of such small pixels is not an easy task in the mid-wave infrared (MWIR) range, as the pixel size is close to the wavelength due to the diffraction limit. This work confirms a strong interest in using EBIC for MTF measurement of small pixel pitches, with a systematic study of 7.5 µm pixel pitch with different designs aimed at optimizing MTF. For an optimized diode of the new generation p-on-n technology, the measured MTF at Nyquist is 55%, value close to the ideal pixel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O. Gravrand, C. Lobre, J.-L. Santailler, N. Baier, W. Rabaud, A. Kerlain, D. Sam-Giao, P. Leboterf, B. Cornus, and L. Rubaldo, in Infrared Technol. Appl. XLVIII, edited by G. F. Fulop, M. Kimata, L. Zheng, B. F. Andresen, J. L. Miller, and Y.-H. Kim (SPIE, Orlando, United States, 2022), p. 26.

  2. R.G. Driggers, Opt. Eng. 51, 063202 (2012).

    Article  Google Scholar 

  3. S. Bisotto, J. Abergel, B. Dupont, A. Ferron, O. Mailliart, J.-A. Nicolas, S. Renet, F. Rochette, and J.-L. Santailler, in Infrared Technol. Appl. XLV, edited by G. F. Fulop, C. M. Hanson, and B. F. Andresen (SPIE, Baltimore, United States, 2019), p. 101.

  4. M.A. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, J. Electron. Mater. 34, 880 (2005).

    Article  CAS  Google Scholar 

  5. (n.d.).

  6. L. Martineau, L. Rubaldo, F. Chabuel, and O. Gravrand, in edited by R. Meynart, S. P. Neeck, and H. Shimoda (Dresden, Germany, 2013), p. 88891B.

  7. O. Gravrand, J. C. Desplanches, C. D. Gue, G. Mathieu, and J. Rothman, 7 (n.d.).

  8. F. de la Barrière, G. Druart, N. Guérineau, S. Rommeluère, L. Mugnier, O. Gravrand, N. Baier, N. Lhermet, G. Destefanis, and S. Derelle, J. Electron. Mater. 41, 2730 (2012).

    Article  Google Scholar 

  9. O. Gravrand, J.C. Desplanches, C. Delbègue, G. Mathieu, and J. Rothman, J. Electron. Mater. 35, 1159 (2006).

    Article  CAS  Google Scholar 

  10. A. Yèche, O. Gravrand, A. Ferron, F. Boulard, S. Bisotto, F. Rochette, and J. Abergel, J. Electron. Mater. 49, 6900 (2020).

    Article  Google Scholar 

  11. A. Yèche, F. Boulard, C. Cervera, J.P. Perez, J.B. Rodriguez, P. Christol, and O. Gravrand, Infrared Phys. Technol. 95, 170 (2018).

    Article  Google Scholar 

  12. O. Gravrand and J. Rothman, J. Electron. Mater. 40, 1781 (2011).

    Article  CAS  Google Scholar 

  13. S. L. Price, in 1984 Int. Electron Devices Meet. (IRE, 1984), pp. 560–563.

  14. A. Yèche, F. Boulard, and O. Gravrand, J. Electron. Mater. 48, 6045 (2019).

    Article  Google Scholar 

  15. D. Drouin, P. Hovington, and R. Gauvin, Scanning 19, 20 (1997).

    Article  CAS  Google Scholar 

  16. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, Scanning 29, 92 (2007).

    Article  CAS  Google Scholar 

  17. K. Moazzami, J. Phillips, D. Lee, S. Krishnamurthy, G. Benoit, Y. Fink, and T. Tiwald, J. Electron. Mater. 34, 773 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Bustillos Vasco.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bustillos Vasco, S., Baier, N., Lobre, C. et al. Modulation Transfer Function Measurements by Electron-Beam-Induced Current of HgCdTe Planar Diode with Small Pitch and High Operating Temperature. J. Electron. Mater. 52, 7081–7088 (2023). https://doi.org/10.1007/s11664-023-10655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10655-9

Keywords

Navigation