Skip to main content
Log in

Maskless Direct-Write Lithography-Patterned Molybdenum Metal-Contacted Indium Silicon Oxide Thin-Film Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, indium silicon oxide (ISO) thin-film transistors (TFT) were developed with molybdenum as the source and drain contact using sputtering and lithography techniques. The influence of channel length on the electrical properties of the ISO TFTs was studied by varying the channel length from ultra-short 5 µm to 100 µm. The highest mobility of 13.23 cm2/V s with an on/off ratio of 108 order was obtained for the ISO TFT post-annealed at 150°C with a channel length of 5 µm and width of 250 µm. In addition, the bias stress stability of the ISO TFT was measured.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Hara, T. Kikuchi, H. Kitagawa, J. Morinaga, H. Ohgami, H. Imai, T. Daitoh, and T. Matsuo, IGZO-TFT technology for large-screen 8K display. J. Soc. Inf. Disp. 26, 169 (2018).

    Article  CAS  Google Scholar 

  2. B. Wang, W. Huang, A. Facchetti, and T. J. Marks, in Amorphous oxide semiconductors (Wiley, 2022), pp. 159–184.

  3. H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J. Non. Cryst. Solids 198–200, 165 (1996).

    Article  Google Scholar 

  4. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).

    Article  CAS  Google Scholar 

  5. I. Isakov, H. Faber, A.D. Mottram, S. Das, M. Grell, A. Regoutz, R. Kilmurray, M.A. McLachlan, D.J. Payne, and T.D. Anthopoulos, Quantum confinement and thickness-dependent electron transport in solution-processed In2O3 transistors. Adv. Electron. Mater. 6, 2000682 (2020).

    Article  CAS  Google Scholar 

  6. I. Abdullah, J.E. Macdonald, Y.H. Lin, T.D. Anthopoulos, N.H. Salahr, S.A. Kakil, and F.F. Muhammadsharif, Bias stability of solution-processed In2O3 thin film transistors. J. Phys. Mater. 4, 015003 (2021).

    Article  CAS  Google Scholar 

  7. S. Gupta and S.P. Lacour, Performance of indium gallium zinc oxide thin-film transistors in saline solution. J. Electron. Mater. 45, 3192 (2016).

    Article  CAS  Google Scholar 

  8. M. Estrada, Y. Hernandez-Barrios, A. Cerdeira, F. Ávila-Herrera, J. Tinoco, O. Moldovan, F. Lime, and B. Iñiguez, Crystalline-like temperature dependence of the electrical characteristics in amorphous indium-gallium-zinc-oxide thin film transistors. Solid State Electron. 135, 43 (2017).

    Article  CAS  Google Scholar 

  9. S.Y. Huang, T.C. Chang, M.C. Chen, S.W. Tsao, S.C. Chen, C.T. Tsai, and H.P. Lo, Device characteristics of amorphous indium gallium zinc oxide thin film transistors with ammonia incorporation. Solid State Electron. 61, 96 (2011).

    Article  CAS  Google Scholar 

  10. K.A. Stewart, V. Gouliouk, D.A. Keszler, and J.F. Wager, Sputtered boron indium oxide thin-film transistors. Solid State Electron. 137, 80 (2017).

    Article  CAS  Google Scholar 

  11. S. Aikawa, T. Nabatame, and K. Tsukagoshi, Si-incorporated amorphous indium oxide thin-film transistors. Jpn. J. Appl. Phys. 58, 090506 (2019).

    Article  CAS  Google Scholar 

  12. T.W. Seo, H.S. Kim, K.H. Lee, K.B. Chung, and J.S. Park, High mobility and stability of thin-film transistors using silicon-doped amorphous indium tin oxide semiconductors. J. Electron. Mater. 43, 3177 (2014).

    Article  CAS  Google Scholar 

  13. Y.H. Lin and C.T. Lee, Stability of indium gallium zinc aluminum oxide thin-film transistors with treatment processes. J. Electron. Mater. 46, 936 (2017).

    Article  CAS  Google Scholar 

  14. T.H. Cheng, S.P. Chang, and S.J. Chang, Electrical properties of indium aluminum zinc oxide thin film transistors. J. Electron. Mater. 47, 6923 (2018).

    Article  CAS  Google Scholar 

  15. S. Parthiban, K. Park, H.J. Kim, S. Yang, and J.Y. Kwon, Carbon-incorporated amorphous indium zinc oxide thin-film transistors. J. Electron. Mater. 43, 4224 (2014).

    Article  CAS  Google Scholar 

  16. G. Yao, H. Ma, S. Sambandan, J. Robertson, and A. Nathan, Indium silicon oxide TFT fully photolithographically processed for circuit integration. IEEE J. Electron Devices Soc. 8, 1162 (2020).

    Article  CAS  Google Scholar 

  17. T. Kizu, S. Aikawa, T. Nabatame, A. Fujiwara, K. Ito, M. Takahashi, and K. Tsukagoshi, Homogeneous double-layer amorphous Si-doped indium oxide thin-film transistors for control of turn-on voltage. J. Appl. Phys. 120, 045702 (2016).

    Article  Google Scholar 

  18. N. Mitoma, S. Aikawa, W. Ou-Yang, X. Gao, T. Kizu, M.F. Lin, A. Fujiwara, T. Nabatame, and K. Tsukagoshi, Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: comparison between Si- and W-dopants. Appl. Phys. Lett. 106, 042106 (2015).

    Article  Google Scholar 

  19. N. Mitoma, B. Da, H. Yoshikawa, T. Nabatame, M. Takahashi, K. Ito, T. Kizu, A. Fujiwara, and K. Tsukagoshi, Phase transitions from semiconductive amorphous to conductive polycrystalline in indium silicon oxide thin films. Appl. Phys. Lett. 109, 221903 (2016).

    Article  Google Scholar 

  20. S. Arulkumar, S. Parthiban, J.Y. Kwon, Y. Uraoka, J.P.S. Bermundo, A. Mukherjee, and B.C. Das, High mobility silicon indium oxide thin-film transistor fabrication by sputtering process. Vacuum 199, 110963 (2022).

    Article  CAS  Google Scholar 

  21. S. Arulkumar, S. Parthiban, and J.Y. Kwon, The influence of post-annealing temperature on indium-silicon oxide thin film transistors. Mater. Sci. Semicond. Process. 145, 106665 (2022).

    Article  CAS  Google Scholar 

  22. S. Lee, Y. Song, H. Park, A. Zaslavsky, and D.C. Paine, Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors. Solid State Electron. 135, 94 (2017).

    Article  CAS  Google Scholar 

  23. J. Jeong, G.J. Lee, J. Kim, and B. Choi, Scaling behaviour of a-IGZO TFTs with transparent a-IZO source/drain electrodes. J. Phys. D. Appl. Phys. 45 (2012)

  24. J.M. Bernhard, Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions (1999).

  25. R.F. Minibaev, A.A. Bagatur’yants, D.I. Bazhanov, A.A. Knizhnik, and M.V. Alfimov, First-principles investigation of the electron work function for the (001) surface of indium oxide In2O3 and indium tin oxide (ITO) as a function of the surface oxidation level. Nanotechnol Russ 5, 185 (2010).

    Article  Google Scholar 

  26. R.M. Eastment, and C.H.B. Mee, Work function measurements on (100), (110) and (111) surfaces of aluminium. J. Phys. F Met. Phys. 3, 1738 (1973).

    Article  CAS  Google Scholar 

  27. M. Nakata, C. Zhao, and J. Kanicki, DC sputtered amorphous In-Sn-Zn-O thin-film transistors: electrical properties and stability. Solid State Electron. 116, 22 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. S. Parthiban thanks DST SERB (Grant No. CRG/2019/002107) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Parthiban.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulkumar, S., Shyaam, K., Parthiban, S. et al. Maskless Direct-Write Lithography-Patterned Molybdenum Metal-Contacted Indium Silicon Oxide Thin-Film Transistors. J. Electron. Mater. 52, 7534–7540 (2023). https://doi.org/10.1007/s11664-023-10652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10652-y

Keywords

Navigation