Skip to main content
Log in

Investigation of Structural, Optical, and Photo-Response Properties of Photochemical UV Assisted CBD-Grown CdS Thin Films

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The fabrication of a cadmium sulfide (CdS) thin film has been carried out by the chemical bath deposition method under two different conditions, namely, without UV light (nonexposed) and with UV light (exposed). The thin films were found to be uniform, smooth, and homogenous under both growth conditions. Structural and microstructural studies were carried out to understand the mechanism of thin-film growth. Under both conditions, the CdS thin film was found to be face-centered cubic structured. The UV light-exposed CdS thin film acquired acicular or flower-like over structures embedded in the continuous thin film of CdS. The optical band gap increased for the UV light-exposed CdS thin film. In addition, the dark and light currents also increased around 6 times for the UV light-exposed thin film compared to the nonexposed UV light thin films. The highest photosensitivity for the nonexposed and exposed UV light CdS thin film device was ~ 200% and 230%, respectively. A decrease in the photocurrent was detected and probed as a result of traps and the recombination of electrons and holes. Our findings suggest that photoexcitation during chemical reactions could be used as an effective tool to modulate the growth process and, in turn, to tune the optoelectrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Britt and C. Ferekides, Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl. Phys. Lett. 62, 2851 (1993).

    Article  CAS  Google Scholar 

  2. W. Zhao, J. Shi, C. Tian, J. Wu, H. Li, Y. Li, B. Yu, Y. Luo, H. Wu, Z. Xie, C. Wang, D. Duan, D. Li, and Q. Meng, CdS induced passivation toward high efficiency and stable planar perovskite solar cells. ACS Appl. Mater. Interfaces 13(8), 9771 (2021).

    Article  CAS  Google Scholar 

  3. S. Wagner, J.L. Shay, P. Migliorato, and H.M. Kasper, CuInSe2/CdS heterojunction photovoltaic detectors. Appl. Phys. Lett. 25, 434 (1974).

    Article  CAS  Google Scholar 

  4. K.B. Jinesh, K.C. Wilson, S.V. Thampi, C.S. Kartha, K.P. Vijayakumar, T. Abe, and Y. Kashiwaba, How quantum confinement comes in chemically deposited CdS A detailed XPS investigation. Phys. E 19(3), 303 (2003).

    Article  CAS  Google Scholar 

  5. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, One-dimensional CdS nanostructures: synthesis, properties, and applications. Nanoscale 2, 168 (2010).

    Article  CAS  Google Scholar 

  6. P. Zhao and K. Hung, Preparation and characterization of netted sphere-like CdS nanostructures. Cryst. Growth Des. 8, 717 (2008).

    Article  CAS  Google Scholar 

  7. X. Liu, Y. Wu, X. Li, W. Zhang, L. Zhao, H.Q. Wang, and J. Fang, CdS–phenanthroline derivative hybrid cathode interlayers for high performance inverted organic solar cells. J. Mater. Chem. A 4, 297 (2016).

    Article  CAS  Google Scholar 

  8. X. Liu, Y. Wu, X. Li, W. Zhang, L. Zhao, H.Q. Wang, and J. Fang, CdS phenanthroline derivative hybrid cathode interlayers for high performance inverted organic solar cells. J. Mater. Chem. A 4, 297 (2016).

    Article  CAS  Google Scholar 

  9. R.S. Kapadnis, S.B. Bansode, A.T. Supekar, P.K. Bhujbal, S.S. Kale, S.R. Jadkar, and H.M. Pathan, Cadmium Telluride/Cadmium Sulfide thin films solar cells: a review. ES Energy Environ. 10, 3 (2020).

    CAS  Google Scholar 

  10. K. Ramanathan, M.A. Contreras, C.L. Perkins, S. Asher, F.S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, Properties of 192% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog. Photovolt Res. App. 11, 225 (2003).

    Article  CAS  Google Scholar 

  11. T.L. Chu and S.S. Chu, Recent progress in thin-film cadmium telluride solar cells. Prog. Photovolt. 1(1), 31 (1993).

    Article  CAS  Google Scholar 

  12. K.Y. Lee, J.R. Lim, H. Rho, Y.J. Choi, K.J. Choi, and J.G. Park, Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets. Appl. Phys. Lett. 91, 01901 (2007).

    Google Scholar 

  13. J.P. Ge and Y.D. Lee, Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater. 14, 157 (2004).

    Article  CAS  Google Scholar 

  14. L.F. Dong, J. Jiao, M. Coulter, and L. Love, Catalytic growth of CdS nanobelts and nanowires on tungsten substrates. Chem. Phys. Lett. 376, 653 (2003).

    Article  CAS  Google Scholar 

  15. H.E. Maliki, J.C. Bernède, S. Marsillac, J. Pinel, X. Castel, and J. Pouzet, Study of the influence of annealing on the properties of CBD-CdS thin films. Appl. Surf. Sci. 205, 65 (2003).

    Article  Google Scholar 

  16. N.S. Kozhevnikova, A.A. Rempel, F. Hergert, and A. Magerl, Structural study of the initial growth of nanocrystalline CdS thin films in a chemical bath. Thin Solid Films 517, 2586 (2009).

    Article  CAS  Google Scholar 

  17. V.D. Moreno-Reginoa, F.M. Castañeda-de-la-Hoya, C.G. Torres-Castanedo, J. Márquez-Marín, R. Castanedo-Pérez, G. Torres-Delgado, and O. Zelaya-Ángel, Structural, optical, electrical and morphological properties of CdS films deposited by CBD varying the complexing agent concentration. Res. Phys. 13, 102238 (2019).

    Google Scholar 

  18. N.P. Sathiya, S.P.K. Shalini, V. Anbarasu, S.A. Anbuchudar, and R. Saravanakumar, Characterization of CdS thin films and nanoparticles by a simple chemical bath technique. Mater Lett. 220, 161 (2018).

    Article  Google Scholar 

  19. A.V. Feitosa, M.A.R. Miranda, J.M. Sasaki, and M.A. Araújo-Silva, A new route of preparing CdS thin films by chemical bath deposition using EDTA as ligand. Braz. J. Phys. 34, 656 (2004).

    Article  CAS  Google Scholar 

  20. J.A. Khimani, H.S. Chaki, J.T. Malek, P.J. Tailor, M.S. Chauhan, and M.P. Deshpande, Cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques- a comparative study. Mater. Res. Express 5, 036406 (2018).

    Article  Google Scholar 

  21. K. Hani, O. Oladeji Isaiah, and L. Chow, Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent. Thin Solid Films 516, 5967 (2008).

    Article  Google Scholar 

  22. I. Carreón-Moncada, L.A. González, J.L. Rodríguez-Galicia, and J.C. Rendón-Angeles, Chemical deposition of CdS films by an ammonia-free process with amino acids as complexing agents. Thin Solid Films 599, 166 (2016).

    Article  Google Scholar 

  23. A. Apolinar-Iribe, M.C. Acosta-Enríquez, M.A. Quevedo-López, R. Ramírez-Bon, A. De León, and S.J. Castillo, Acetylacetone as complexing agent for CdS thin films grow chemical bath deposition. Chalcogenide Lett. 8, 77 (2011).

    CAS  Google Scholar 

  24. S.B. Patil and A.K. Singh, Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin film. Appl. Surf. Sci. 256, 2884 (2010).

    Article  CAS  Google Scholar 

  25. W.-C. Song, Effect of reaction temperature on properties of CdS thin films prepared by chemical bath deposition. J. Korean Inst. Surf. Eng. 3, 38 (2005).

    Google Scholar 

  26. R.G. Valenzuelao, H.E. Ponce, D. Trejo, and C.G. Valenzuela, Effect of heat treatment on Cds thin films by chemical bath deposition. Int. J. Electron Device Phys. 1, 001 (2017).

    Article  Google Scholar 

  27. V. Senthamilselvi, K. Ravichandran, and K. Saravanakumar, Influence of immersion cycles on the stoichiometry of CdS films deposited by SILAR technique. J. Phys. Chem. Solids 74, 65 (2013).

    Article  CAS  Google Scholar 

  28. L. Oladeji, J.R. Chow, W.K. Liu, and A.N.P. Chu, Bustamante, Comparative study of CdS thin films deposited by single, continuous and multiple dip chemical processes. Thin Solid Films 359, 154 (2000).

    Article  CAS  Google Scholar 

  29. L.E.T. Villanueva, F.L. García, I.R. Chávez-Urbiola, F.J. Willars-Rodriguez, R.R. Bon, M. Ramírez-Cardona, L.E. Hernández-Cruz, and E.A. Chávez-Urbiola, The effect of ultraviolet radiation on the chemical bath deposition of Bis(Thiourea) cadmium chloride crystals and the subsequent CdS obtention. J. Vis. Exp. 138, 1 (2018).

    Google Scholar 

  30. M. Kostoglou, N. Andritsos, and A.J. Karabelas, Modeling thin film CdS development in a chemical bath deposition process. Ind. Eng. Chem. Res. 39, 3272 (2000).

    Article  CAS  Google Scholar 

  31. C.E. Pérez-García, R. Ramírez-Bon, and Y.V. Vorobiev, PbS thin films growth with CBD and PCBD techniques: a comparative study. Chalcogenide Lett. 12(11), 579 (2015).

    Google Scholar 

  32. D. Quinonez-Urias, A. Vera-Marquina, D. Berman-Mendoza, A. L. Leal-Cruz, L. A. Garc´ıa-Delgado, I. E. Zald´ıvar-Huerta, A. Garc´ıa-Juarez, A. G. Rojas-Hernandez, and R. Gomez-Fuentes (2014) Annealing effect on structural, morphological, and optical behaviors of CBD-CdS nanostructured films for solar cells, optical materials express 4: 2280

  33. W.G.C. Kumarage, R.P. Wijesundera, C.P. Seneviratne, N. Jayalath, E. Kaur, N. Comini, and B.S. Gunawardhana, Dassanayake, A study on CdCl2 activation of CBD-CdS films. J Mater Sci Mater Electron 31, 13330 (2020).

    Article  CAS  Google Scholar 

  34. F. Lisco, A. Shaw, A. Wright, J.M. Walls, and F. Iza, Atmospheric-pressure plasma surface activation for solution processed photovoltaic devices. Sol. Energy 146, 287 (2017).

    Article  CAS  Google Scholar 

  35. K. Heo, H. Lee, Y. Park, J. Park, H.J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, Aligned networks of cadmium sulfide nanowires for highly flexible photodetectors with improved photoconductive responses. J. Mater. Chem. 22, 2173 (2012).

    Article  CAS  Google Scholar 

  36. M.A. Mahdi, J.J. Hassan, N.M. Ahmed, S.S. Ng, and Z. Hassan, Growth and characterization of CdS single-crystalline micro-rod photodetector. Superlattices Microstruct. 54, 137 (2013).

    Article  CAS  Google Scholar 

  37. Q. An, X. Meng, and P. Sun, High-performance fully nanostructured photodetector with single-crystalline CdS Nanotubes as active layer and very long Ag nanowires as transparent electrodes. ACS Appl. Mater. Interfaces 7, 22941 (2015).

    Article  CAS  Google Scholar 

  38. L. Li, Z. Lou and G. Shen, Hierarchical CdS nanowires based rigid and flexible photodetectors with ultrahigh sensitivity. ACS Appl. Mater. Interfaces 7, 23507 (2015).

    Article  CAS  Google Scholar 

  39. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, and D. Golberg, Single−crystalline CdS nanobelts for excellent field−emitters and ultrahigh quantum−efficiency photodetectors. Adv. Mater 22, 3161 (2010).

    Article  CAS  Google Scholar 

  40. G. Gou, G. Dai, C. Qian, Y. Liu, Y. Fu, Z. Tian, Y. He, L. Kong, J. Yang, J. Sun, and Y. Gao, High-performance ultraviolet photodetectors based on CdS/CdS: SnS2 superlattice nanowires. Nanoscale 8, 14580 (2016).

    Article  CAS  Google Scholar 

  41. B. Jin, P. Huang, Q. Zhang, X. Zhou, X. Zhang, L. Li, J. Su, H. Li, and T. Zhai, Self-limited epitaxial growth of ultrathin nonlayered CdS flakes for high-performance photodetectors. Adv. Funct. Mater. 28, 1800181 (2018).

    Article  Google Scholar 

  42. B. Singh, S. Arya, A. Sharma, P. Mahajan, J. Gupta, A. Singh, S. Verma, P. Bandhoria, and V. Bharti, Effect of Pd concentration on the structural, morphological and photodiode properties of TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 6, 31 (2020).

    Google Scholar 

  43. D.I. Halge, V.N. Narwade, P.M. Khanzode, S. Begum, I. Banerjee, J.W. Dadge, J. Kovac, A.S. Rana, and K.A. Bogle, Development of highly sensitive and ultra-fast visible-light photodetector using nano-CdS thin film. Appl. Phys. A 127, 446 (2021).

    Article  CAS  Google Scholar 

  44. P.M. Wojcik, L.D. Bastatas, N. Rajabi, P.V. Bakharev, and D.N. McIlroy, The effects of sub-bandgap transitions and the defect density of states on the photocurrent response of a single ZnO coated silica nanospring. Nanotechnology 32, 035202 (2021).

    Article  CAS  Google Scholar 

  45. R. Devi, P. Purkayastha, P.K. Kalita, R. Sharma, H.L. Das, and B.K. Sharma, Photoelectric properties of CdS thin film prepared by chemical bath deposition. Indian J. Pure Appl. Phys. 45, 624 (2007).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. K. Suman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, A., Lalita, Khanna, S.P. et al. Investigation of Structural, Optical, and Photo-Response Properties of Photochemical UV Assisted CBD-Grown CdS Thin Films. J. Electron. Mater. 52, 7302–7314 (2023). https://doi.org/10.1007/s11664-023-10638-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10638-w

Keywords

Navigation