Skip to main content
Log in

Design of Resistive Load Inverter and Common Source Amplifier Circuits Using Symmetric and Asymmetric Nanowire FETs

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, multi-channel nanowire (NW) performance is significantly improved by symmetric and asymmetric spacer length optimization. Device performance metrics including ON current (ION), OFF current (IOFF), and switching ratio (ION/IOFF) are improved by careful optimization of spacer length. It is observed that the NW FET exhibits the best performance with symmetric spacer lengths of source-side spacer length (LS) and drain-side spacer length (LD) of 15 nm, whereas it is observed to be LS = 15 nm and LD = 25 nm for asymmetric spacer lengths. The device exhibits the highest ION with the symmetric spacer, ensuring high-performance applications, and the lowest IOFF with the asymmetric spacer, ensuring low-power applications. In addition, an analog/RF performance comparison is made with symmetric and asymmetric spacers, and the circuit performance results are extracted using the Cadence tool through the Verilog-A interface by utilizing a lookup table approach. The common source (CS) amplifier and resistive load inverter are investigated and gain is determined. The CS amplifier exhibits higher gain (VOUT/VIN) with the asymmetric spacer. Further, a resistive load inverter is designed and demonstrated to realize optimal performance by varying the resistive load (RL) and operating voltage (VDD). The symmetric spacer exhibits better voltage transfer characteristics with RL variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. J. Shalf, The future of computing beyond Moore’s Law. Phil. Trans. R. Soc. A. (2020). https://doi.org/10.1098/rsta.2019.0061.

    Article  Google Scholar 

  2. R.K. Jaisawal, S. Rathore, N. Gandhi, P.N. Kondekar, S. Banchhor, V.B. Sreenivas, Y.S. Song, and N. Bagga, Self-heating and interface traps assisted early aging revelation and reliability analysis of negative capacitance FinFET, in 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) (Seoul, 2023), pp. 1–3. https://doi.org/10.1109/EDTM55494.2023.10103127.

  3. A. Sai Kumar, M. Deekshana, V. Bharath Sreenivasulu, R. Prasad Somineni, and D. Kanthi Sudha, Characterization for sub-5nm technology nodes of junctionless gate-all-around nanowire FETs, in 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India (2022), pp. 1–5. https://doi.org/10.1109/ICCCNT54827.2022.9984269.

  4. S.S. Katta, T. Kumari, S. Das, and P.K. Tiwari, Design and performance assessment of a vertical feedback FET. Microelectron. J. (2023). https://doi.org/10.1016/j.mejo.2023.105806.

    Article  Google Scholar 

  5. S. Natarajan, M. Agostinelli, S. Akbar, M. Bost, A. Bowonder, V. Chikarmane, S. Chouksey, A. Dasgupta, K. Fischer, Q. Fu, T. Ghani, M. Giles, S. Govindaraju, R. Grover, W. Han, D. Hanken, E. Haralson, M. Haran, M. Heckscher, R. Heussner, P. Jain, R. James, R. Jhaveri, I. Jin, H. Kam, E. Karl, C. Kenyon, M. Liu, Y. Luo, R. Mehandru, S. Morarka, L. Neiberg, P. Packan, A. Paliwal, C. Parker, P. Patel, R. Patel, C. Pelto, L. Pipes, P. Plekhanov, M. Prince, S. Rajamani, J. Sandford, B. Sell, S. Sivakumar, P. Smith, B. Song, K. Tone, T. Troeger, J. Wiedemer, M. Yang, and K. Zhang, A 14 nm logic technology featuring 2nd-generation FinFET”, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size, in IEEE International Electron Devices Meeting (2014), pp. 3.7.1–3.7.3. https://doi.org/10.1109/IEDM.2014.7046976.

  6. C. Auth, A. Aliyarukunju, M. Asoro, D. Bergstrom, V. Bhagwat, J. Birdsall, N. Bisnik, M. Buehler, V. Chikarmane, G. Ding, Q. Fu, H. Gomez, W. Han, D. Hanken, M. Haran, M. Hattendorf, R. Heussner, H. Hiramatsu, B. Ho, S. Jaloviar, I. Jin, S. Joshi, S. Kirby, S. Kosaraju, H. Kothari, G. Leatherman, K. Lee, J. Leib, A. Madhavan, K. Marla, H. Meyer, T. Mule, C. Parker, S. Parthasarathy, C. Pelto, L. Pipes, I. Post, M. Prince, A. Rahman, S. Rajamani, A. Saha, J. D. Santos, M. Sharma, V. Sharma, J. Shin, P. Sinha, P. Smith, M. Sprinkle, A. St. Amour, C. Staus, R. Suri, D. Towner, A. Tripathi, A. Tura, C. Ward, and A. Yeoh, A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, Self-Aligned Quad Patterning, contact over active gate and cobalt local interconnects, in IEEE International Electron Devices Meeting (San Francisco, 2017), pp. 29.1.1–29.1.4. https://doi.org/10.1109/IEDM.2017.8268472.

  7. S. Barraud, V. Lapras, B. Previtali, M.P. Samson, J. Lacord, S. Martinie, M.-A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J.M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J.C. Barbé, M. Vinet, and T. Ernst, Performance and design considerations for gate-all-around stacked-NanoWires FETs, in IEEE International Electron Devices Meeting San Francisco, CA, USA (2017), pp. 29.2.1–29.2.4. https://doi.org/10.1109/IEDM.2017.8268473.

  8. J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225 (2010). https://doi.org/10.1038/nnano.2010.15.

    Article  CAS  Google Scholar 

  9. C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, and J.-P. Colinge, Performance estimation of junctionless multigate transistors. Solid. State. Electron. 54, 97 (2010). https://doi.org/10.1016/j.sse.2009.12.003.

    Article  CAS  Google Scholar 

  10. R. Angamuthu, B. ChettiaGoundarSengodan, M. Anandan, A. Varghese, and B.S. Vakkalakula, LG 55 nm T-gate InGaN/GaN channel based high electron mobility transistors for stable transconductance operation. Int. J. RF Microw. Comput. Aided Eng. 32, e23308 (2022). https://doi.org/10.1002/mmce.23308.

    Article  Google Scholar 

  11. N.A. Kumari, V.B. Sreenivasulu, J. Ajayan, T. Janaradhan Reddy, and P. Prithvi, Spacer engineering on nanosheet FETs towards device and circuit perspective. ECS J. Solid State Sci. Technol. 12, 053009 (2023). https://doi.org/10.1149/2162-8777/acd65e.

    Article  Google Scholar 

  12. R.T. Doria, M.A. Pavanello, R.D. Trevisoli, M. de Souza, C.-W. Lee, I. Ferain, N.D. Akhavan, R. Yan, P. Razavi, R. Yu, A. Kranti, and J.-P. Colinge, Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Devices 58, 2511 (2011). https://doi.org/10.1109/TED.2011.2157826.

    Article  CAS  Google Scholar 

  13. S. Sahay and M.J. Kumar, Realizing efficient volume depletion in SOI junctionless FETs. IEEE J. Electron. Devices Soc. 4(3), 110 (2016). https://doi.org/10.1109/JEDS.2016.2532965.

    Article  CAS  Google Scholar 

  14. V. Thirunavukkarasu, Y.-R. Jhan, Y.-B. Liu, and Y.-C. Wu, Performance of inversion, accumulation, and junctionless mode n-Type and p-Type bulk silicon FinFETs with 3-nm gate length. IEEE Electron Device Lett. 36(7), 645 (2015). https://doi.org/10.1109/LED.2015.2433303.

    Article  CAS  Google Scholar 

  15. A. Goel, S.K. Gupta, and K. Roy, Asymmetric drain spacer extension (ADSE) FinFETs for low-power and robust SRAMs. IEEE Trans. Electron Devices 58(2), 296 (2011). https://doi.org/10.1109/TED.2010.2090421.

    Article  Google Scholar 

  16. P.K. Pal, B.K. Kaushik, and S. Dasgupta, Asymmetric dual-spacer trigate FinFET device-circuit codesign and its variability analysis. IEEE Trans. Electron Devices 62(4), 1105 (2015). https://doi.org/10.1109/TED.2015.2400053.

    Article  CAS  Google Scholar 

  17. J. Singh, R. Krishnan, S. Mookerjea, S. Datta, and V. Narayanan, TFET based 6T SRAM cell. U.S. Patent 20 120 106 236 A1 (2012). https://patents.google.com/patent/US20120106236A1/en.

  18. International Roadmap for Devices and Systems (IRDS™) 2020 Edition (2020). https://irds.ieee.org/editions/2020.

  19. V.B. Sreenivasulu and V. Narendar, Design insights of nanosheet FET and CMOS circuit applications at 5-nm technology node. IEEE Trans. Electron Devices. 69(8), 4115 (2022). https://doi.org/10.1109/TED.2022.3181575.

    Article  CAS  Google Scholar 

  20. N. Loubet, T. Hook, P. Montanini, C.-W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S.-C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, R. Conti, H. Song, D. Lee, D. Kong, Y. Xu, A. Arceo, Z. Bi, P. Xu, R. Muthinti, J. Li, R. Wong, D. Brown, P. Oldiges, R. Robison, J. Arnold, N. Felix, S. Skordas, J. Gaudiello, T. Standaert, H. Jagannathan, D. Corliss, M.-H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET, in 2017 Symposium on VLSI Technology (2017), pp. T230–T231. https://doi.org/10.23919/VLSIT.2017.7998183.

  21. S. Verma, P.K. Pal, S. Mahawar, and B.K. Kaushik, Performance enhancement of STT MRAM using asymmetric-k sidewall-spacer NMOS. IEEE Trans. Electron Devices. 63(7), 2771 (2016). https://doi.org/10.1109/TED.2016.2570602.

    Article  CAS  Google Scholar 

  22. V.B. Sreenivasulu, N.A. Kumari, V. Lokesh, S.K. Vishvakarma, and V. Narendar, Common source amplifier and ring oscillator performance optimization using multi-ridge/Nanosheet FETs. ECS J. Solid State Sci. Technol. 12, 23013 (2023). https://doi.org/10.1149/2162-8777/acbb9e.

    Article  Google Scholar 

  23. N.A. Kumari, V.B. Sreenivasulu, and P. Prithvi, Impact of scaling on nanosheet FET and CMOS circuit applications. ECS J. Solid State Sci. Technol. 12, 33001 (2023). https://doi.org/10.1149/2162-8777/acbcf2.

    Article  Google Scholar 

  24. Cadence Virtuoso Spectre Circuit Simulator, Cadence Des. Syst., San Jose, CA, USA (2016).

Download references

Acknowledgments

The authors would like to thank the department of IIT Patna for providing the TCAD Tools.

Funding

The authors declare that they have no financial interests.

Author information

Authors and Affiliations

Authors

Contributions

VBS: writing—original draft preparation, formal analysis, investigation, simulation, device simulation; AK: data curation, circuit simulation; VL: grammar and proof editing; A: proof review and editing; MU: review and editing; VV: resistive load inverter discussions.

Corresponding author

Correspondence to V. Bharath Sreenivasulu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasulu, V.B., Kumari, N.A., Lokesh, V. et al. Design of Resistive Load Inverter and Common Source Amplifier Circuits Using Symmetric and Asymmetric Nanowire FETs. J. Electron. Mater. 52, 7268–7279 (2023). https://doi.org/10.1007/s11664-023-10618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10618-0

Keywords

Navigation