Skip to main content

Advertisement

Log in

Orthorhombic-Nb2O5 Nanocrystal@carbon Hybrid Spheres as Anode Material for Enhanced Lithium-Ion Storage

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Orthorhombic Nb2O5 (T-Nb2O5) nanocrystal@carbon hybrid spheres were synthesized via the controlled hydrolysis of niobium ethoxide, the assembly effect of oleylamine, and subsequent carbonization. The size of the T-Nb2O5 nanocrystals was ~ 26.6 nm, and the diameter of the hybrid spheres was 300–400 nm. The contents of T-Nb2O5 and carbon were 87.84% and 11.91%, respectively. The hybrid spheres exhibited excellent Li storage performance, including high reversible capacity (447 mAh g−1 at 0.5 A g−1/2.5C), good rate capability (186 mAh g−1 at 5 A g−1/25C), and excellent cycling stability (279 mAh g−1 after 600 cycles at 1 A g−1/5C). The capacity decay rate was only 0.06% per cycle. It has been found that the electrochemical performance of the hybrid spheres is superior to those of other reported Nb2O5 composites. Moreover, the reaction kinetics of the hybrid spheres are also outstanding. The impedance is low, while the Li+ diffusion coefficient is high. The hybrid spheres maintain good structural integrity after 600 cycles. The superior Li storage performance is associated with the unique architecture of the hybrid spheres. The ultrafine size of Nb2O5 nanocrystals ensures high electrochemical activity. The surface carbon and internal carbon of the hybrid spheres not only protect Nb2O5 but also promote the rapid transfer of electrons and Li+. These results demonstrate that T-Nb2O5 nanocrystal@carbon hybrid spheres are a promising candidate material for lithium-ion storage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Cai, Z.J. Yao, J.Y. Xiang, X.H. Chang, W.L. Yao, L.X. He, L.F. Ruan, Z.H. Chen, J.T. Shi, T.C. Liu, S.H. Shen, H.J. Xie, and Y.F. Yang, Rational construction of metal-organic framework derived dual-phase doping N-TiO2 plus S-carbon yolk-shell nanodisks for high-performance lithium ion batteries. Electrochim. Acta 452, 142323 (2023).

    CAS  Google Scholar 

  2. B. Bai, L.L. Qiu, Y. Wang, X.Y. Jiang, J.X. Shui, Y.F. Yuan, L.X. Song, J. Xiong, and P.F. Du, Ultrafine carbon-nanofiber-reinforced graphene fiber electrodes for flexible supercapacitors with high specific capacitance and durable cycle stability. ACS Appl. Energy Mater. 6, 353 (2023).

    CAS  Google Scholar 

  3. Y.F. Zhang, Z.Y. Zeng, and H. Li, Design of 3d transition metal anchored B5N3 catalysts for electrochemical CO2 reduction to methane. J. Mater. Chem. A 10, 9737 (2022).

    CAS  Google Scholar 

  4. S.H. Gong, B.Q. Wang, Y. Xue, Q.S. Sun, J. Wang, J. Kuai, F. Liu, and J.P. Cheng, NiCoO2 and polypyrrole decorated three-dimensional carbon nanofiber network with coaxial cable-like structure for high-performance supercapacitors. J. Colloid Interface Sci. 628, 343 (2022).

    CAS  Google Scholar 

  5. L.X. He, L.F. Ruan, W.L. Yao, C. Cai, Z.H. Chen, X.H. Chang, J.T. Shi, T.C. Liu, S.H. Shen, Z.J. Yao, and Y.F. Yang, Tailoring sodium iron hexacyanoferrate/carbon nanotube arrays with 3D networks for efficient sodium ion storage. J. Electron. Mater. 52, 3517 (2023).

    CAS  Google Scholar 

  6. W.D. Wang, P.P. Zhang, S.Q. Gao, B.Q. Wang, X.C. Wang, M. Li, F. Liu, and J.P. Cheng, Core-shell nanowires of NiCo2O4@alpha-Co(OH)2 on Ni foam with enhanced performances for supercapacitors. J. Colloid Interf. Sci. 579, 71 (2020).

    CAS  Google Scholar 

  7. C. Li, C. Zheng, F. Cao, Y.Q. Zhang, and X.H. Xia, The development trend of graphene derivatives. J. Electron. Mater. 51, 4107 (2022).

    CAS  Google Scholar 

  8. T. Zhang, Y.F. Yuan, B.X. Wang, G.S. Cai, P.F. Du, Y.Z. Huang, and S.Y. Guo, CoSe nanoparticles in-situ grown in 3D honeycomb carbon for high-performance lithium storage. J. Colloid Interf. Sci. 640, 52 (2023).

    CAS  Google Scholar 

  9. S.H. Shen, Y.B. Chen, J.C. Zhou, H.M. Zhang, X.H. Xia, Y.F. Yang, Y.Q. Zhang, A. Noori, M.F. Mousavi, M.H. Chen, Y. Xia, and W.K. Zhang, Microbe-mediated biosynthesis of multidimensional carbon-based materials for energy storage applications. Adv. Energy Mater. 2204259 (2023).

  10. J. Fang, Y.F. Yuan, L.K. Wang, H.L. Ni, H.L. Zhu, J.L. Yang, J.S. Gui, Y.B. Chen, and S.Y. Guo, Synthesis and electrochemical performances of ZnO/MnO2 sea urchin-like sleeve array as anode materials for lithium-ion batteries. Electrochim. Acta 112, 364 (2014).

    Google Scholar 

  11. T.F. Zhang, C. Li, F. Wang, A.H. Noori, M.F. Mousavi, X.H. Xia, and Y.Q. Zhang, Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 22, e202200083 (2022).

    CAS  Google Scholar 

  12. F. Chen, Y.F. Yuan, L.W. Ye, M. Zhu, G.C. Cai, S.M. Yin, J.L. Yang, and S.Y. Guo, Co3O4 nanocrystalline-assembled mesoporous hollow polyhedron nanocage-in-nanocage as improved performance anode for lithium-ion batteries. Mater. Lett. 237, 213 (2019).

    CAS  Google Scholar 

  13. S.M. Zhang, G.L. Liu, W.M. Qiao, J.T. Wang, and L.C. Ling, Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide. J. Colloid Interf. Sci. 562, 193 (2020).

    CAS  Google Scholar 

  14. H.B. Ding, Z.H. Song, K. Feng, H.Z. Zhang, H.M. Zhang, and X.F. Li, Controlled synthesis of pure-phase metastable tetragonal Nb2O5 anode material for high-performance lithium batteries. J. Solid State Chem. 299, 122136 (2021).

    CAS  Google Scholar 

  15. W.X. Zhang, P.X. Shen, L.Z. Qian, P.C. Mao, M. Ahmad, H.T. Chu, R.G. Zheng, Z.Y. Wang, L. Bai, H.Y. Sun, Y.L. Yu, and Y.G. Liu, Tuning the phase composition in polymorphic Nb2O5 nanoplates for rapid and stable lithium ion storage. Electrochim. Acta 399, 139368 (2021).

    CAS  Google Scholar 

  16. J. Lin, S.Y. Zhao, T.G. Tranter, Z.Y. Zhang, F. Peng, D. Brett, R. Jervis, and P.R. Shearing, Modelling and experimental investigation of Nb2O5 as a high-rate battery anode material. Electrochim. Acta 443, 141983 (2023).

    CAS  Google Scholar 

  17. J.J. Yuan, X.F. Li, J. Liu, S.Y. Zuo, X.K. Li, F.K. Li, Y.F. Gan, H.S. He, X.J. Xu, X.K. Zhang, and J.X. Meng, Pomegranate-like structured Nb2O5/Carbon@N-doped carbon composites as ultrastable anode for advanced sodium/potassium-ion batteries. J. Colloid Interf. Sci. 613, 84 (2022).

    CAS  Google Scholar 

  18. X. Liu, G. Liu, H. Chen, J. Ma, and R. Zhang, Facile synthesis of Nb2O5 nanobelts assembled from nanorods and their applications in lithium ion batteries. J. Phys. Chem. Solids 111, 8 (2017).

    CAS  Google Scholar 

  19. Y.J. Yoo, and Y.C. Kang, Mesoporous Nb2O5 microspheres with filled and yolk-shell structure as anode materials for lithium-ion batteries. J. Alloys Compd. 776, 722 (2019).

    CAS  Google Scholar 

  20. X.X. Qu, B.L. Xing, G.X. Huang, H.H. Zhao, Z.D. Jiang, C.X. Zhang, S.W. Hong, and Y.J. Cao, Facile synthesis of flower-like T-Nb2O5 nanostructures as anode materials for lithium-ion battery. J. Mater. Sci. Mater. Electron 32, 875 (2021).

    CAS  Google Scholar 

  21. B.H. Deng, T.Y. Lei, W.H. Zhu, L. Xiao, and J.P. Liu, In-plane assembled orthorhombic Nb2O5 nanorod films with high-rate Li+ intercalation for high-performance flexible Li-ion capacitors. Adv. Funct. Mater. 28, 1704330 (2018).

    Google Scholar 

  22. X.Y. Han, P.A. Russo, N. Goubard-Bretesche, S. Patane, S. Santangelo, R. Zhang, and N. Pinna, Exploiting the condensation reactions of acetophenone to engineer carbon-encapsulated Nb2O5 nanocrystals for high-performance Li and Na energy storage systems. Adv. Energy Mater. 9, 1902813 (2019).

    CAS  Google Scholar 

  23. Q. Wang, Z.Y. Jia, L.G. Li, J. Wang, G.G. Xu, X.Y. Ding, N. Liu, M.N. Liu, and Y.G. Zhang, Coupling niobia nanorods with a multicomponent carbon network for high power lithium-ion batteries. ACS Appl. Mater. Interfaces 11, 44196 (2019).

    CAS  Google Scholar 

  24. J.J. Hu, J.J. Li, K. Wang, and H.Y. Xia, Self-assembly Nb2O5 microsphere with hollow and carbon coated structure as high rate capability lithium-ion electrode materials. Electrochim. Acta 331, 135364 (2020).

    CAS  Google Scholar 

  25. Y.L. Yu, Y.H. Jin, N. Hasan, S.F. Cao, X.L. Wang, H. Ming, P.X. Shen, R.G. Zheng, H.Y. Sun, and M. Ahmad, Tuning the interface interaction between Nb2O5 nanosheets/graphene for high current rate and long cyclic lithium-ion batteries. Electrochim. Acta 435, 141397 (2022).

    CAS  Google Scholar 

  26. Z. Zhu, Y.G. Chen, F. Liu, H. Wang, R.H. Yu, D.Q. He, and J.S. Wu, Al-doped Nb2O5/carbon micro-particles anodes for high rate lithium-ion batteries. Electrochim. Acta 441, 141796 (2023).

    CAS  Google Scholar 

  27. X.L. Chen, K. Liu, Q.W. Qin, Z.L. Yu, M.Q. Li, X.Y. Qu, Y. Zhou, A.C. Dou, M.R. Su, and Y.J. Liu, High-rate capability of carbon-coated micron-sized hexagonal TT-Nb2O5 composites for lithium-ion battery. Ceram. Int. 47, 15400 (2021).

    CAS  Google Scholar 

  28. W. Fang, Y. Zhang, C. Kang, Q. Meng, A.R. Shi, S.F. Lou, X.Q. Cheng, G.P. Yin, and L.L. Zhang, Oxygen vacancies Nb2O5-x: ultrastable lithium storage anode materials for advanced rechargeable batteries. Appl. Surf. Sci. 600, 154068 (2022).

    CAS  Google Scholar 

  29. H.L. Cui, G.L. Zhu, Y.A. Xie, W. Zhao, C.Y. Yang, T.Q. Lin, H. Gu, and F.Q. Huang, Black nanostructured Nb2O5 with improved solar absorption and enhanced photoelectrochemical water splitting. J. Mater. Chem. A 3, 11830 (2015).

    CAS  Google Scholar 

  30. N. Li, X.W. Lan, L.B. Wang, Y.J. Jiang, S.T. Guo, Y.Q. Li, and X.L. Hu, Precisely tunable T-Nb2O5 nanotubes via atomic layer deposition for fast-charging lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 16445 (2021).

    CAS  Google Scholar 

  31. Y.J. Zheng, Z.G. Yao, Z. Shadike, M. Lei, J.J. Liu, and C.L. Li, Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 (2022).

    CAS  Google Scholar 

  32. J.J. Yuan, H.S. He, X.F. Li, Y.F. Gan, M.Q. Mu, H.J. Yu, F. Kuang, X.K. Li, X.K. Zhang, and J. Liu, Fabrication of Nb2O5/Carbon submicrostructures for advanced lithium-ion battery anodes. Chem. Eur. J. 28, e202202432 (2022).

    CAS  Google Scholar 

  33. S.Y. Zhu, Y.J. Yang, J.Q. Liu, and J.M. Sun, Carbon-confined ultrasmall T-Nb2O5 nanocrystals anchored on carbon nanotubes by pyrolysing MLD-niobiumcone films for enhanced electrochemical applications. J. Mater. Chem. A 8, 25371 (2020).

    CAS  Google Scholar 

  34. Z.H. Song, H. Li, W. Liu, H.Z. Zhang, J.W. Yan, Y.F. Tang, J.Y. Huang, H.M. Zhang, and X.F. Li, Ultrafast and stable Li-(de)intercalation in a large single crystal H-Nb2O5 anode via optimizing the homogeneity of electron and ion transport. Adv. Mater. 32, 2001001 (2020).

    CAS  Google Scholar 

  35. S.Y. Zhu, P.H. Xu, J.Q. Liu, and J.M. Sun, Atomic layer deposition and structure optimization of ultrathin Nb2O5 films on carbon nanotubes for high-rate and long-life lithium ion storage. Electrochim. Acta 331, 135268 (2020).

    CAS  Google Scholar 

  36. S.H. Shen, S.Z. Zhang, X. Cao, S.J. Deng, G.X. Pan, Q. Liu, X.L. Wang, X.H. Xia, and J.P. Tu, Popcorn-like niobium oxide with cloned hierarchical architecture as advanced anode for solid-state lithium ion batteries. Energy Storage Mater. 25, 695 (2020).

    Google Scholar 

  37. X.M. Zhai, J.L. Liu, Y.J. Zhao, C. Chen, X.C. Zhao, J.B. Li, and H.B. Jin, Oxygen vacancy boosted the electrochemistry performance of Ti4+ doped Nb2O5 toward lithium ion battery. Appl. Surf. Sci. 499, 143905 (2020).

    CAS  Google Scholar 

  38. X.X. Qu, Y.H. Liu, B.B. Li, B.L. Xing, G.X. Huang, C.X. Zhang, S.W. Hong, J.L. Yu, and Y.J. Cao, Synthesis of high reversibility anode composite materials using T-Nb2O5 and coal-based graphite for lithium-ion battery applications. Energy Fuels 34, 3887 (2020).

    CAS  Google Scholar 

  39. Z.Q. Hu, Q. He, Z. Liu, X. Liu, M.S. Qin, B. Wen, W.C. Shi, Y. Zhao, Q. Li, and L.Q. Mai, Facile formation of tetragonal-Nb2O5 microspheres for high-rate and stable lithium storage with high areal capacity. Sci. Bull. 65, 1154 (2020).

    CAS  Google Scholar 

  40. J.W. Kang, H.W. Zhang, Z.Y. Zhan, Y.Q. Li, M. Ling, and X.H. Gao, Construction of a flexible Nb2O5/carboxyl multiwalled carbon nanotube film as anode for lithium and sodium storages. ACS Appl. Energy Mater. 3, 11841 (2020).

    CAS  Google Scholar 

  41. R. Kang, S. Li, B.B. Zou, X.H. Liu, Y. Zhao, J.X. Qiu, G.C. Li, F. Qiao, and J.B. Lian, Design of Nb2O5@rGO composites to optimize the lithium-ion storage performance. J. Alloys Compd. 865, 158824 (2021).

    CAS  Google Scholar 

  42. J.B. Wu, Y. Lin, and X.H. Huang, Aspergillus oryzae spore carbon/niobium oxide composite material as anode for lithium ion batteries. Mater. Res. Bull. 134, 111062 (2021).

    CAS  Google Scholar 

  43. H.F. Yu, L. Xu, H.Y. Wang, H. Jiang, and C.Z. Li, Nanochannel-confined synthesis of Nb2O5/CNTs nanopeapods for ultrastable lithium storage. Electrochim. Acta 295, 829 (2019).

    CAS  Google Scholar 

  44. K. Kim, J. Hwang, H. Seo, H.S. Kim, and J.H. Kim, Surface-controlled Nb2O5 nanoparticle networks for fast Li transport and storage. J. Mater. Sci. 54, 2493 (2019).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Yuan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Lv, W., Yuan, Y. et al. Orthorhombic-Nb2O5 Nanocrystal@carbon Hybrid Spheres as Anode Material for Enhanced Lithium-Ion Storage. J. Electron. Mater. 52, 6730–6740 (2023). https://doi.org/10.1007/s11664-023-10614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10614-4

Keywords

Navigation