Skip to main content
Log in

Luminescence Studies of CaY2Al4SiO12:Eu3+ Phosphor by Sol–Gel Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A series of CaY2Al4SiO12:xEu3+ (x = 0.01, 0.03, 0.05, 0.07 and 0.09) phosphors were synthesized by the sol–gel method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques were used in the study of the crystal structure, surface morphology, and elemental composition of the prepared phosphors. Photoluminescence (PL) and thermoluminescence (TL) properties were also studied. When the CaY2Al4SiO12:Eu3+ phosphor was excited at 394 nm wavelength, the optimum emission peak centered at 592 nm was found. The calculated CIE coordinates from the PL emission spectra lie in the orange-red region of the visible spectrum. To determine the optimum doping concentration of Eu3+ , the variation in the luminescence intensity with different concentrations of Eu3+ in the CaY2Al4SiO12 host lattice was also studied. To study the TL of the prepared samples, a 60Co- γ (gamma) source was used for irradiation and to determine the trapping parameters such as activation energy (E), order of kinetics (b) and frequency factor (s) of the samples, Chen’s peak shape method was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.T. Linda, R.P. Prabhakar, M. Thomas, S.K. Mahesh, V.R. Reshmi, and T.S. Sreena, Structural influence on the photoluminescence properties of Eu3+ doped Gd3MO7 (M = Nb, Sb, and Ta) red phosphors. RSC Phys. Chem. Chem. Phys. 16, 17108 (2014). https://doi.org/10.1039/c4cp02287d.

    Article  Google Scholar 

  2. V. Singh and M.K. Tiwari, Pb2+ doped CaY2Al4SiO12 garnet phosphor. Optik Int. J. Light Electron Opt. 202, 163541 (2020). https://doi.org/10.1016/j.ijleo.2019.163541.

    Article  CAS  Google Scholar 

  3. A.K. Bedyal, D.D. Ramteke, V. Kumar, and S.C. Swart, Excitation wavelength and Eu3+/ Tb3+ content ratio dependent tunable photoluminescence from NaSrBO3: Eu3+/Tb3+ phosphor. J. Mater. Sci. Mater. Electron. 30, 11714 (2019). https://doi.org/10.1007/s10854-019-01533-4.

    Article  CAS  Google Scholar 

  4. S. Singh, G. Lakshminarayana, M. Sharma, T. Duy Dao, K. Chen, T. Yoshiki Wada, and T.N. Takeda, Excitation induced tunable emission in Ce3+/Eu3+ Co-doped BiPO4 nano-phosphors. J. Spectroscopy 2015, 493607 (2015). https://doi.org/10.1155/2015/493607.

    Article  CAS  Google Scholar 

  5. V. Singh, D.A. Hakeem, and G. Lakshminarayana, An insight into the luminescence properties of Ce3+ in garnet structured CaY2Al4SiO12:Ce3+ phosphors. Optik Int. J. Light Electron Opt. 206, 163833 (2020). https://doi.org/10.1016/j.ijleo.2019.163833.

    Article  CAS  Google Scholar 

  6. A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Justel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes. J. Alloys. Compd. 509, 6247 (2011). https://doi.org/10.1016/j.jallcom.2011.03.032.

    Article  CAS  Google Scholar 

  7. K. Park, T. Kim, Y. Yu, K. Seo, and J. Kim, Y/Gd-free yellow Lu3Al5O12:Ce3+ phosphor for white LEDs. J. Lumin. 173, 159 (2016). https://doi.org/10.1016/J.JLUMIN.2016.01.014.

    Article  CAS  Google Scholar 

  8. A. Katelnikovas, S. Sakirzanovas, D. Dutczak, J. Plewa, D. Enseling, H. Winkler, A. Kareiva, and T. Justel, Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs. J. Lumin. 136, 17 (2013). https://doi.org/10.1016/j.jlumin.2012.11.012.

    Article  CAS  Google Scholar 

  9. M.S. Bhagat, K.N. Shinde, N. Singh, M.S. Pathak, P.K. Singh, S.U. Pawar, and V. Singh, Photoluminescence properties of green emitting CaY2Al4SiO12:Tb3+ garnet phosphor. Optik 161, 111 (2018). https://doi.org/10.1016/j.ijleo.2018.02.016.

    Article  CAS  Google Scholar 

  10. Z. Zheng, M. Deng, C. Wang, X. Zhang, Q. Liu, Xu. Xiaoke, and Le. Gao, Dual-ion substituted (MeY)3(AlSi)5O12: Eu garnet phosphors: combinatorial screening, reductive annealing, and luminescence property. RSC Adv. 11, 22034 (2021). https://doi.org/10.1039/d1ra02705k.

    Article  CAS  Google Scholar 

  11. Ya.. Zhydachevskii, I.I. Syvorotka, L. Vasylechko, D. Sugak, I.D. Borshchyshyn, A.P. Luchechko, Y.I. Vakhula, S.B. Ubizskii, M.M. Vakiv, and A. Suchocki, Crystal structure and luminescent properties of nanocrystalline YAG and YAG: Nd synthesized by sol–gel method. Opt. Mater. 34, 1984 (2012). https://doi.org/10.1016/j.optmat.2011.12.023.

    Article  CAS  Google Scholar 

  12. A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, Synthesis and optical properties of Ce3+ doped Y3Mg2AlSi2O12 phosphors. J. Lumin. 129, 1356 (2009). https://doi.org/10.1016/j.jlumin.2009.07.006.

    Article  CAS  Google Scholar 

  13. L. Pavasaryte, A. Katelnikovas, A. Momot, G. Reekmans, A. Hardy, M. Van Bael, P. Adriaensens, T.C.K. Yang, and A. Kareiva, Eu3+ - Doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: Synthesis, characterization and investigation of structural and luminescence properties. J. Lumin. 212, 14 (2019). https://doi.org/10.1016/j.jlumin.2019.04.005.

    Article  CAS  Google Scholar 

  14. R. Srinivasan, N.R. Yogamalar, J. Elanchezhiyan, R. Justin Joseyphus, and A. Chandra Bose, Structural and optical properties of europium doped yttrium oxide nano-particles for phosphor applications. J. Alloy. Comp. 496, 472 (2010). https://doi.org/10.1016/j.jallcom.2010.02.083.

    Article  CAS  Google Scholar 

  15. A.N. Meza-Rocha, R. Lozada-Morales, A. Speghini, M. Bettinelli, and U. Caldiño, White light generation in Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass. Opt. Mater. (Amst) 51, 128 (2016). https://doi.org/10.1016/j.optmat.2015.11.032.

    Article  CAS  Google Scholar 

  16. R. Cao, Y. Ren, T. Chen, Y. Xiaoguang, W. Li, Y. Guo, and T. Chen, Emission enhancement of Sr3YP3O12: R (R=Dy3+ and Eu3+) phosphors for light-emitting diodes by adding H3BO3 flux. Optik Int. J. Light Electron Opt. 170, 527 (2018).

    Article  CAS  Google Scholar 

  17. Y. Patle, N. Brahme, D.P. Bisen, T. Richhariya, E. Chandrawanshi, A. Choubey, and M. Tiwari, Study of photoluminescence, thermoluminescence, and afterglow properties of Dy3+ doped Ba2ZnSi2O7 phosphor. Optik Int. J. Light Electron Opt. 226, 165896 (2021). https://doi.org/10.1016/j.ijleo.2020.165896.

    Article  CAS  Google Scholar 

  18. Y.V. Baklanova, L.G. Maksimova, O.A. Lipina, A.P. Tyutyunnik, A.Y. Chufarov, and V.G. Zubkov, A red-emitting phosphor based on Eu3+ doped Li6SrLa2Ta2O12 garnets for solid state lighting applications. Mater. Res. Exp. 6, 066201 (2019). https://doi.org/10.1088/2053-1591/ab093b.

    Article  CAS  Google Scholar 

  19. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates color. Res. Appl. 17, 142 (1992).

    Google Scholar 

  20. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, A. Choubey, Y. Patle, and E. Chandrawanshi, Synthesis and optical characterization of Dy3+ doped barium alumino silicate phosphor. Mater. Sci. Eng. B 273, 115445 (2021). https://doi.org/10.1016/j.mseb.2021.115445.

    Article  CAS  Google Scholar 

  21. R.L. Nyenge, H.C. Swart, D. Poelman, P.F. Smet, L.I.D.J. Martin, L.L. Noto, S. Som, and O.M. Ntwaeaborwa, Thermal quenching, cathode-luminescence and thermo-luminescence study of Eu2+ doped CaS powder. J. Alloy. Comp. 657, 787 (2016). https://doi.org/10.1016/j.jallcom.2015.10.143.

    Article  CAS  Google Scholar 

  22. A.R. Kadam, G.C. Mishra, and S.J. Dhoble, Thermo-luminescence study and evaluation of trapping parameters CaTiO3: RE (RE = Eu3+, Dy3+) phosphor for TLD applications. J. Mol. Struct. 1225, 129129 (2020). https://doi.org/10.1016/j.molstruc.2020.129129.

    Article  CAS  Google Scholar 

  23. A.R. Kadam, G.C. Mishra, and S.J. Dhoble, Thermo-luminescence study of Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor via doping of singly, doubly and triply ionized ions. Ceram. Int. 46, 132 (2020). https://doi.org/10.1016/j.ceramint.2019.08.242.

    Article  CAS  Google Scholar 

  24. M. Jain, R.K. Manju, S.O. Won, K.H. Chae, A. Vij, and A. Thakur, Defect states and kinetic parameter analysis of ZnAl2O4 nano-crystals by x-ray photoelectron spectroscopy and thermo-luminescence. Sci. Rep. Nature Res. 10, 385 (2020). https://doi.org/10.1038/s41598-019-57227-8.

    Article  CAS  Google Scholar 

  25. T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, K. Tiwari, and E. Chandrawanshi, Analysis of thermo-luminescence glow curve and evaluation of trapping parameters of Cerium activated M2Al2SiO7 (M= Ca and Sr) phosphor for TLD application. Mater. Chem. Phys. 287, 126273 (2022). https://doi.org/10.1016/j.matchemphys.2022.126273.

    Article  CAS  Google Scholar 

  26. R. Chen, J.L. Lawless, and V. Pagonis, A model for explaining the concentration quenching of thermo-luminescence. Radiat. Measurem. 46, 1380 (2011). https://doi.org/10.1016/j.radmeas.2011.01.022.

    Article  CAS  Google Scholar 

  27. A. Kumar, R. Arvind Kumar, M. Dogra, S. Manhas, and R.K. Sharma, Investigation of thermo-luminescence and kinetic parameters of gamma ray exposed LiF: Sm3+, Eu3+ nano-phosphors for dosimetric applications. Ceram. Int. 44(13), 15535 (2018). https://doi.org/10.1016/j.ceramint.2018.05.215.

    Article  CAS  Google Scholar 

  28. L.L. Singh, Fatal error in the May and partridge general order kinetics equation. Int. J. Lumines. Appl. 8(1), 2277 (2018).

    Google Scholar 

  29. G.R. Banjare, D.P. Bisen, N. Brahme, C. Belodhiya, P. Dewangan, E. Chandrawansi, and I.P. Sahu, Thermoluminescence studies of Dy3+-doped calcium barium orthosilicate co-doped with Li+ ion. J. Thermal Anal. Calorim. 139(7), 1577 (2020). https://doi.org/10.1007/s10973-019-08520-1.

    Article  CAS  Google Scholar 

  30. S.J. Singh, M. Karmakar, and S.D. Singh, On the determination of the order of kinetics in thermo-luminescence by peak-shape method. Radiat. Effects Defects Solids 168(5), 352 (2013). https://doi.org/10.1080/10420150.2013.771358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anita Verma or Ravi Sharma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Sharma, R., Bisen, D.P. et al. Luminescence Studies of CaY2Al4SiO12:Eu3+ Phosphor by Sol–Gel Method. J. Electron. Mater. 52, 6769–6777 (2023). https://doi.org/10.1007/s11664-023-10610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10610-8

Keywords

Navigation