Abstract
A series of CaY2Al4SiO12:xEu3+ (x = 0.01, 0.03, 0.05, 0.07 and 0.09) phosphors were synthesized by the sol–gel method. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques were used in the study of the crystal structure, surface morphology, and elemental composition of the prepared phosphors. Photoluminescence (PL) and thermoluminescence (TL) properties were also studied. When the CaY2Al4SiO12:Eu3+ phosphor was excited at 394 nm wavelength, the optimum emission peak centered at 592 nm was found. The calculated CIE coordinates from the PL emission spectra lie in the orange-red region of the visible spectrum. To determine the optimum doping concentration of Eu3+ , the variation in the luminescence intensity with different concentrations of Eu3+ in the CaY2Al4SiO12 host lattice was also studied. To study the TL of the prepared samples, a 60Co- γ (gamma) source was used for irradiation and to determine the trapping parameters such as activation energy (E), order of kinetics (b) and frequency factor (s) of the samples, Chen’s peak shape method was used.
Similar content being viewed by others
References
F.T. Linda, R.P. Prabhakar, M. Thomas, S.K. Mahesh, V.R. Reshmi, and T.S. Sreena, Structural influence on the photoluminescence properties of Eu3+ doped Gd3MO7 (M = Nb, Sb, and Ta) red phosphors. RSC Phys. Chem. Chem. Phys. 16, 17108 (2014). https://doi.org/10.1039/c4cp02287d.
V. Singh and M.K. Tiwari, Pb2+ doped CaY2Al4SiO12 garnet phosphor. Optik Int. J. Light Electron Opt. 202, 163541 (2020). https://doi.org/10.1016/j.ijleo.2019.163541.
A.K. Bedyal, D.D. Ramteke, V. Kumar, and S.C. Swart, Excitation wavelength and Eu3+/ Tb3+ content ratio dependent tunable photoluminescence from NaSrBO3: Eu3+/Tb3+ phosphor. J. Mater. Sci. Mater. Electron. 30, 11714 (2019). https://doi.org/10.1007/s10854-019-01533-4.
S. Singh, G. Lakshminarayana, M. Sharma, T. Duy Dao, K. Chen, T. Yoshiki Wada, and T.N. Takeda, Excitation induced tunable emission in Ce3+/Eu3+ Co-doped BiPO4 nano-phosphors. J. Spectroscopy 2015, 493607 (2015). https://doi.org/10.1155/2015/493607.
V. Singh, D.A. Hakeem, and G. Lakshminarayana, An insight into the luminescence properties of Ce3+ in garnet structured CaY2Al4SiO12:Ce3+ phosphors. Optik Int. J. Light Electron Opt. 206, 163833 (2020). https://doi.org/10.1016/j.ijleo.2019.163833.
A. Katelnikovas, J. Jurkevičius, K. Kazlauskas, P. Vitta, T. Justel, A. Kareiva, A. Žukauskas, and G. Tamulaitis, Efficient cerium-based sol–gel derived phosphors in different garnet matrices for light-emitting diodes. J. Alloys. Compd. 509, 6247 (2011). https://doi.org/10.1016/j.jallcom.2011.03.032.
K. Park, T. Kim, Y. Yu, K. Seo, and J. Kim, Y/Gd-free yellow Lu3Al5O12:Ce3+ phosphor for white LEDs. J. Lumin. 173, 159 (2016). https://doi.org/10.1016/J.JLUMIN.2016.01.014.
A. Katelnikovas, S. Sakirzanovas, D. Dutczak, J. Plewa, D. Enseling, H. Winkler, A. Kareiva, and T. Justel, Synthesis and optical properties of yellow emitting garnet phosphors for pcLEDs. J. Lumin. 136, 17 (2013). https://doi.org/10.1016/j.jlumin.2012.11.012.
M.S. Bhagat, K.N. Shinde, N. Singh, M.S. Pathak, P.K. Singh, S.U. Pawar, and V. Singh, Photoluminescence properties of green emitting CaY2Al4SiO12:Tb3+ garnet phosphor. Optik 161, 111 (2018). https://doi.org/10.1016/j.ijleo.2018.02.016.
Z. Zheng, M. Deng, C. Wang, X. Zhang, Q. Liu, Xu. Xiaoke, and Le. Gao, Dual-ion substituted (MeY)3(AlSi)5O12: Eu garnet phosphors: combinatorial screening, reductive annealing, and luminescence property. RSC Adv. 11, 22034 (2021). https://doi.org/10.1039/d1ra02705k.
Ya.. Zhydachevskii, I.I. Syvorotka, L. Vasylechko, D. Sugak, I.D. Borshchyshyn, A.P. Luchechko, Y.I. Vakhula, S.B. Ubizskii, M.M. Vakiv, and A. Suchocki, Crystal structure and luminescent properties of nanocrystalline YAG and YAG: Nd synthesized by sol–gel method. Opt. Mater. 34, 1984 (2012). https://doi.org/10.1016/j.optmat.2011.12.023.
A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Justel, and A. Kareiva, Synthesis and optical properties of Ce3+ doped Y3Mg2AlSi2O12 phosphors. J. Lumin. 129, 1356 (2009). https://doi.org/10.1016/j.jlumin.2009.07.006.
L. Pavasaryte, A. Katelnikovas, A. Momot, G. Reekmans, A. Hardy, M. Van Bael, P. Adriaensens, T.C.K. Yang, and A. Kareiva, Eu3+ - Doped Ln3Al5O12 (Ln = Er, Tm, Yb, Lu) garnets: Synthesis, characterization and investigation of structural and luminescence properties. J. Lumin. 212, 14 (2019). https://doi.org/10.1016/j.jlumin.2019.04.005.
R. Srinivasan, N.R. Yogamalar, J. Elanchezhiyan, R. Justin Joseyphus, and A. Chandra Bose, Structural and optical properties of europium doped yttrium oxide nano-particles for phosphor applications. J. Alloy. Comp. 496, 472 (2010). https://doi.org/10.1016/j.jallcom.2010.02.083.
A.N. Meza-Rocha, R. Lozada-Morales, A. Speghini, M. Bettinelli, and U. Caldiño, White light generation in Tb3+/Eu3+/Dy3+ triply-doped Zn(PO3)2 glass. Opt. Mater. (Amst) 51, 128 (2016). https://doi.org/10.1016/j.optmat.2015.11.032.
R. Cao, Y. Ren, T. Chen, Y. Xiaoguang, W. Li, Y. Guo, and T. Chen, Emission enhancement of Sr3YP3O12: R (R=Dy3+ and Eu3+) phosphors for light-emitting diodes by adding H3BO3 flux. Optik Int. J. Light Electron Opt. 170, 527 (2018).
Y. Patle, N. Brahme, D.P. Bisen, T. Richhariya, E. Chandrawanshi, A. Choubey, and M. Tiwari, Study of photoluminescence, thermoluminescence, and afterglow properties of Dy3+ doped Ba2ZnSi2O7 phosphor. Optik Int. J. Light Electron Opt. 226, 165896 (2021). https://doi.org/10.1016/j.ijleo.2020.165896.
Y.V. Baklanova, L.G. Maksimova, O.A. Lipina, A.P. Tyutyunnik, A.Y. Chufarov, and V.G. Zubkov, A red-emitting phosphor based on Eu3+ doped Li6SrLa2Ta2O12 garnets for solid state lighting applications. Mater. Res. Exp. 6, 066201 (2019). https://doi.org/10.1088/2053-1591/ab093b.
C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates color. Res. Appl. 17, 142 (1992).
T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, A. Choubey, Y. Patle, and E. Chandrawanshi, Synthesis and optical characterization of Dy3+ doped barium alumino silicate phosphor. Mater. Sci. Eng. B 273, 115445 (2021). https://doi.org/10.1016/j.mseb.2021.115445.
R.L. Nyenge, H.C. Swart, D. Poelman, P.F. Smet, L.I.D.J. Martin, L.L. Noto, S. Som, and O.M. Ntwaeaborwa, Thermal quenching, cathode-luminescence and thermo-luminescence study of Eu2+ doped CaS powder. J. Alloy. Comp. 657, 787 (2016). https://doi.org/10.1016/j.jallcom.2015.10.143.
A.R. Kadam, G.C. Mishra, and S.J. Dhoble, Thermo-luminescence study and evaluation of trapping parameters CaTiO3: RE (RE = Eu3+, Dy3+) phosphor for TLD applications. J. Mol. Struct. 1225, 129129 (2020). https://doi.org/10.1016/j.molstruc.2020.129129.
A.R. Kadam, G.C. Mishra, and S.J. Dhoble, Thermo-luminescence study of Eu3+ doped Na2Sr2Al2PO4Cl9 phosphor via doping of singly, doubly and triply ionized ions. Ceram. Int. 46, 132 (2020). https://doi.org/10.1016/j.ceramint.2019.08.242.
M. Jain, R.K. Manju, S.O. Won, K.H. Chae, A. Vij, and A. Thakur, Defect states and kinetic parameter analysis of ZnAl2O4 nano-crystals by x-ray photoelectron spectroscopy and thermo-luminescence. Sci. Rep. Nature Res. 10, 385 (2020). https://doi.org/10.1038/s41598-019-57227-8.
T. Richhariya, N. Brahme, D.P. Bisen, T. Badapanda, K. Tiwari, and E. Chandrawanshi, Analysis of thermo-luminescence glow curve and evaluation of trapping parameters of Cerium activated M2Al2SiO7 (M= Ca and Sr) phosphor for TLD application. Mater. Chem. Phys. 287, 126273 (2022). https://doi.org/10.1016/j.matchemphys.2022.126273.
R. Chen, J.L. Lawless, and V. Pagonis, A model for explaining the concentration quenching of thermo-luminescence. Radiat. Measurem. 46, 1380 (2011). https://doi.org/10.1016/j.radmeas.2011.01.022.
A. Kumar, R. Arvind Kumar, M. Dogra, S. Manhas, and R.K. Sharma, Investigation of thermo-luminescence and kinetic parameters of gamma ray exposed LiF: Sm3+, Eu3+ nano-phosphors for dosimetric applications. Ceram. Int. 44(13), 15535 (2018). https://doi.org/10.1016/j.ceramint.2018.05.215.
L.L. Singh, Fatal error in the May and partridge general order kinetics equation. Int. J. Lumines. Appl. 8(1), 2277 (2018).
G.R. Banjare, D.P. Bisen, N. Brahme, C. Belodhiya, P. Dewangan, E. Chandrawansi, and I.P. Sahu, Thermoluminescence studies of Dy3+-doped calcium barium orthosilicate co-doped with Li+ ion. J. Thermal Anal. Calorim. 139(7), 1577 (2020). https://doi.org/10.1007/s10973-019-08520-1.
S.J. Singh, M. Karmakar, and S.D. Singh, On the determination of the order of kinetics in thermo-luminescence by peak-shape method. Radiat. Effects Defects Solids 168(5), 352 (2013). https://doi.org/10.1080/10420150.2013.771358.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Verma, A., Sharma, R., Bisen, D.P. et al. Luminescence Studies of CaY2Al4SiO12:Eu3+ Phosphor by Sol–Gel Method. J. Electron. Mater. 52, 6769–6777 (2023). https://doi.org/10.1007/s11664-023-10610-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-023-10610-8