Skip to main content
Log in

Spin Injection Behavior of CoFe/MgO/Si Tunnel Contacts: Effects of Radical Oxygen Annealing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Spin injection phenomena of CoFe/MgO/Si tunnel contacts are demonstrated, the MgO tunnel barrier of which is fabricated using radical oxidation (ROX) at room temperature and successive radical oxygen annealing (ROA). The effects of the ROA processing on spin accumulation behavior in the Si channel are analyzed using Hanle-effect signals measured using a three-terminal spin-accumulation technique. The ROA condition is optimized through the spin injection efficiency obtained from the Hanle-effect signal analysis. The Hanle-effect signals can be decomposed into a non-Lorentz-shaped signal due to spin accumulation in the Si channel and a Lorentz-shaped signal due to other phenomena. The intensity ratio of the channel spin signal component to the total signal intensity significantly changes depending on the ROA condition. Also, the ratio increases with decreasing bias voltage for the Hanle-effect measurement. For the optimum ROA condition, the channel spin component becomes almost dominant for lower bias voltages (<~ 100 mV), i.e., high spin intensity ratios can be achieved for near-zero bias measurements. These phenomena can be attributed to the energy-dependent trap-density distribution of the MgO barrier and/or its interfaces, which have been analyzed from the direct tunneling current through the barrier. The fabrication technique using the ROX and ROA processing is promising for MgO-based spin injectors with high spin injection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Sugahara and M. Tanaka, A spin metal–oxide–semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84, 2307 (2004).

    Article  CAS  Google Scholar 

  2. S. Sugahara, Spin metal-oxide-semiconductor field-effect transistors (spin MOSFETs) for integrated spin electronics. IEE Proc. Circuits Devices Syst. 152, 355 (2005).

    Article  Google Scholar 

  3. Y. Takamura, K. Hayashi, Y. Shuto, and S. Sugahara, Fabrication of high-quality Co2FeSi/SiOxNy/Si(100) tunnel contacts using radical-oxynitridation-formed SiOxNy barrier for Si-based spin transistors. J. Electron. Mater. 41, 954 (2012).

    Article  CAS  Google Scholar 

  4. R. Singh, F. Ahmad, K. Nazeer, R. Kumar, N. Kumar, A.K. Ojha, S.S. Kushvaha, and P. Kumar, Material study of Co2CrAl heusler alloy magnetic thin film and Co2CrAl/n-Si schottky junction device. J. Electron. Mater. 49, 3652 (2020).

    Article  CAS  Google Scholar 

  5. A. Kumar and P.C. Srivastava, Electronic and magneto-transport across the heusler alloy (Co2FeAl)/p-Si interfacial structure. J. Electron. Mater. 43, 381 (2014).

    Article  CAS  Google Scholar 

  6. H. Koike, S. Lee, R. Ohshima, E. Shigematsu, M. Goto, S. Miwa, Y. Suzuki, T. Sasaki, Y. Ando, and M. Shiraishi, Over 1% magnetoresistance ratio at room temperature in non-degenerate silicon-based lateral spin valves. Appl. Phys. Express 13, 083002 (2020).

    Article  CAS  Google Scholar 

  7. X. Lou, C. Adelmann, S.A. Crooker, E.S. Garlid, J. Zhang, K.S.M. Reddy, S.D. Flexner, C.J. Palmstrøm, and P.A. Crowell, Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nat. Phys. 3, 197 (2007).

    Article  CAS  Google Scholar 

  8. I. Appelbaum, B. Huang, and D.J. Monsma, Electronic measurement and control of spin transport in silicon. Nature 447, 295 (2007).

    Article  CAS  Google Scholar 

  9. S.P. Dash, S. Sharma, R.S. Patel, M.P. De Jong, and R. Jansen, Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491 (2009).

    Article  CAS  Google Scholar 

  10. T. Sasaki, T. Oikawa, T. Suzuki, M. Shiraishi, Y. Suzuki, and K. Noguchi, Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession. Appl. Phys. Lett. 96, 122101 (2010).

    Article  Google Scholar 

  11. T. Sasaki, T. Oikawa, M. Shiraishi, Y. Suzuki, and K. Noguchi, Comparison of spin signals in silicon between nonlocal four-terminal and three-terminal methods. Appl. Phys. Lett. 98, 012508 (2011).

    Article  Google Scholar 

  12. C. Gould, C. Rüster, T. Jungwirth, E. Girgis, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt, and L.W. Molenkamp, Tunneling Anisotropic Magnetoresistance: A Spin-Valve-Like Tunnel Magnetoresistance Using a Single Magnetic Layer. Phys. Rev. Lett. 93, 117203 (2004).

    Article  CAS  Google Scholar 

  13. Y. Takamura and S. Sugahara, Analysis and control of the Hanle effect in metal–oxide–semiconductor inversion channels. J. Appl. Phys. 111, 07C323 (2012).

    Article  Google Scholar 

  14. M. Tran, H. Jaffrès, C. Deranlot, J.-M. George, A. Fert, A. Miard, and A. Lemaître, Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor. Phys. Rev. Lett. 102, 036601 (2009).

    Article  CAS  Google Scholar 

  15. S. Sato, R. Nakane, and M. Tanaka, Origin of the broad three-terminal Hanle signals in Fe/SiO2/Si tunnel junctions. Appl. Phys. Lett. 107, 032407 (2015).

    Article  Google Scholar 

  16. Y. Takamura, T. Akushichi, A. Sadano, T. Okishio, Y. Shuto, and S. Sugahara, Analysis of Hanle-effect signals observed in Si-channel spin accumulation devices. J. Appl. Phys. 115, 17C307 (2014).

    Article  Google Scholar 

  17. Y. Kawame, T. Akushichi, Y. Takamura, Y. Shuto, and S. Sugahara, Fabrication and characterization of spin injector using a high-quality B2-ordered-Co2FeSi0.5Al0.5/MgO/Si(100) tunnel contact. J. Appl. Phys. 117, 17D151 (2015).

    Article  Google Scholar 

  18. N. Tezuka and Y. Saito, Spin injection, transport, and detection in a lateral spin transport devices with Co2FeAl0.5Si0.5/n-GaAs, Co2FeSi/MgO/n-Si, and CoFe/MgO/n-Si junctions. Mater. Trans. 57, 767 (2016).

    Article  CAS  Google Scholar 

  19. T. Akushichi, Y. Takamura, Y. Shuto, and S. Sugahara, Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlOx/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing. J. Appl. Phys. 117, 17B531 (2015).

    Article  Google Scholar 

  20. T. Koike, M. Oogane, M. Tsunoda, and Y. Ando, Large spin signals in n+-Si/MgO/Co2Fe0.4Mn0.6Si lateral spin-valve devices. J. Appl. Phys. 127, 085306 (2020).

    Article  CAS  Google Scholar 

  21. M.W. Chase Jr Thermochemical Tables, 4th edn (American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, New York, 1998).

  22. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004).

    Article  CAS  Google Scholar 

  23. T. Uhrmann, T. Dimopoulos, H. Brückl, V.K. Lazarov, A. Kohn, U. Paschen, S. Weyers, L. Bär, and M. Rührig, Characterization of embedded MgO/ferromagnet contacts for spin injection in silicon. J. Appl. Phys. 103, 063709 (2008).

    Article  Google Scholar 

  24. T. Uemura, K. Kondo, J. Fujisawa, K. Matsuda, and M. Yamamoto, Critical effect of spin-dependent transport in a tunnel barrier on enhanced Hanle-type signals observed in three-terminal geometry. Appl. Phys. Lett. 101, 132411 (2012).

    Article  Google Scholar 

  25. R. Huang and A.H. Kitai, Preparation and characterization of thin films of MgO, Al2O3 and MgAl2O4 by atomic layer deposition. J. Electron. Mater. 22, 215 (1993).

    Article  CAS  Google Scholar 

  26. N. Maji, J. Panda, A.S. Kumar, and T.K. Nath, Demonstration of efficient spin injection and detection into p-Si using NiFe2O4 based spin injector in NiFe2O4/MgO/p-Si device. Appl. Phys. A 127, 31 (2021).

    Article  CAS  Google Scholar 

  27. A. Spiesser, Y. Fujita, H. Saito, S. Yamada, K. Hamaya, W. Mizubayashi, K. Endo, S. Yuasa, and R. Jansen, Quantification of spin drift in devices with a heavily doped Si channel. Phys. Rev. Appl. 11, 044020 (2019).

    Article  CAS  Google Scholar 

  28. R. Jansen, Silicon spintronics. Nat. Mater. 11, 400 (2012).

    Article  CAS  Google Scholar 

  29. T. Sasaki, T. Oikawa, T. Suzuki, M. Shiraishi, Y. Suzuki, and K. Noguchi, Evidence of electrical spin injection into silicon using MgO tunnel barrier. IEEE Trans. Magn. 46, 1436 (2010).

    Article  CAS  Google Scholar 

  30. F. Meier and B.P. Zakharchenya eds., Optical Orientation. (Amsterdam: Elsevier, 1984).

    Google Scholar 

  31. E.H. Nicollian and A. Goetzberger, The Si-Sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055 (1967).

    Article  CAS  Google Scholar 

  32. M. Xu, C. Tan, and Y. Wang, Oxide current relaxation spectroscopy in tunneling metal-oxide-semiconductor structures under high field stresses. J. Appl. Phys. 67, 6924 (1990).

    Article  CAS  Google Scholar 

  33. W. Cai, M. Takenaka, and S. Takagi, Evaluation of interface state density of strained-Si metal-oxide-semiconductor interfaces by conductance method. J. Appl. Phys. 115, 094509 (2014).

    Article  Google Scholar 

  34. F.J. Jedema, H.B. Heersche, A.T. Filip, J.J.A. Baselmans, and B.J. Van Wees, Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature 416, 713 (2002).

    Article  CAS  Google Scholar 

  35. A.C. Reilly, W. Park, R. Slater, B. Ouaglal, R. Loloee, W.P. Pratt, and J. Bass, Perpendicular giant magnetoresistance of Co91Fe9/Cu exchange-biased spin-valves: further evidence for a unified picture. J. Magn. Magn. Mater. 195, L269 (1999).

    Article  CAS  Google Scholar 

  36. J.G. Simmons, Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793 (1963).

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge Research Hub for Advanced Nano Characterization, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiju Akushichi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akushichi, T., Takamura, Y., Shiotsu, Y. et al. Spin Injection Behavior of CoFe/MgO/Si Tunnel Contacts: Effects of Radical Oxygen Annealing. J. Electron. Mater. 52, 6902–6910 (2023). https://doi.org/10.1007/s11664-023-10606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10606-4

Keywords

Navigation