Skip to main content

Advertisement

Log in

Ultra-broadband 3D Metamaterial Microwave Absorber Based on Split-Ring Structure Loaded with Resistors and Magnetic Material

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, an ultra-broadband three-dimensional metamaterial microwave absorber (MMA) is proposed based on a composite structure of a split-ring loaded with resistors and magnetic material. The proposed composite MMA (CMMA) exhibits significantly enhanced bandwidth and absorption performance compared to single magnetic absorbing materials. The physics mechanism of the absorption is analyzed by the distributions of electric field, magnetic field, and power flow and loss density. The features of ultra-broadband and wide-angle absorption were systematically characterized by the angular absorption spectrum for both transverse electric and transverse magnetic waves. A parametric study was also performed to achieve ultra-broadband properties of the proposed CMMA. A tested prototype of the proposed CMMA with 18 × 18 unit cells was fabricated and measured. The final experimental results show that the designed CMMA with total thickness of 7.4 mm exhibits absorptance of over 90% from 3.7 GHz to 18 GHz with a relative bandwidth of about 131.8%, which is in good agreement with simulation results. The proposed CMMA has potential applications in stealth, shielding, and energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. K.C. Pitman, M.W. Lindley, D. Simkin, and J.F. Cooper, Radar absorbers: better by design. in IEE Proceedings, F. Radar and Signal Processing, vol. 138 (1991), pp. 223–228.

  2. K.K. Halder, M. Tomar, V.K. Sachdev, and V. Gupta, Development of polyvinylidene fluoride-graphite composites as an alternate material for electromagnetic shielding applications. Mater. Res. Express 6, 075324 (2019).

    CAS  Google Scholar 

  3. S. Sui, H. Ma, J. Wang, M. Feng, Y. Pang, J. Zhang, Z. Xu, and S. Qu, Synthetic design for a microwave absorber and antireflection to achieve wideband scattering reduction. J. Phys. D Appl. Phys. 52, 035103 (2019).

    Google Scholar 

  4. L. Li, X. Zhang, C. Song, and Y. Huang, Progress, challenges, and perspective on metasurfaces for ambient radio frequency energy harvesting. Appl. Phys. Lett. 116, 0003 (2020).

    Google Scholar 

  5. W.W. Salisbury, Absorbent body for electromagnetic waves. U.S. Patent 2599944 (1952).

  6. M.R. Meshram, N.K. Agrawal, B. Sinha, and P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207 (2004).

    CAS  Google Scholar 

  7. I.W. Nam, J.H. Choi, C.G. Kim, and H.K. Lee, Fabrication and design of electromagnetic wave absorber composed of carbon nanotube-incorporated cement composites. Compos. Struct. 206, 439 (2018).

    CAS  Google Scholar 

  8. T.J. Cui, D.R. Smith, and R.P. Liu, Metamaterials: theory, design and applications. (Springer Publishing Company, 2010), 9781441905734.

  9. Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Appl. Phys. Lett. 104, 221110 (2014).

    Google Scholar 

  10. Y. Cheng, J. Fan, H. Luo, and F. Chen, Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial. IEEE Access 8, 7615 (2020).

    Google Scholar 

  11. Q. Sun, Z. Zhang, Y. Huang, X. Ma, M. Pu, Y. Guo, and X. Luo, Asymmetric transmission and wavefront manipulation toward dual-frequency meta-holograms. ACS Photonics 6, 1541 (2019).

    CAS  Google Scholar 

  12. J. Fan and Y. Cheng, Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave. J. Phys. D: Appl. Phys. 53, 025109 (2020).

    CAS  Google Scholar 

  13. L.N. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    CAS  Google Scholar 

  14. C.M. Watts, X. Liu, and W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98 (2012).

    CAS  Google Scholar 

  15. Y.Z. Cheng, R.Z. Gong, Y. Nie, and X. Wang, A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors. Chin. Phys. B 21, 127801 (2012).

    Google Scholar 

  16. X. Yin, C. Long, J. Li, H. Zhu, L. Chen, J. Guan, and X. Li, Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays. Sci. Rep. 5, 15367 (2015).

    CAS  Google Scholar 

  17. J. Zhao and Y. Cheng, Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors. J. Electron. Mater. 45, 5033 (2016).

    CAS  Google Scholar 

  18. W. Li, J. Wei, W. Wang, D. Hu, Y. Li, and J. Guan, Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range. Mater. Des. 110, 27 (2016).

    CAS  Google Scholar 

  19. Y. Cheng, B. He, J. Zhao, and R. Gong, Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J. Electron. Mater. 46, 1293 (2017).

    CAS  Google Scholar 

  20. Y.Z. Cheng, Y.J. Qian, H. Luo, F. Chen, and Z. Cheng, Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E 146, 115527 (2023).

    CAS  Google Scholar 

  21. F.Q. Zhou, F. Qin, Z. Yi, W.T. Yao, Z.M. Liu, X.W. Wu, and P.H. Wu, Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 23, 17041 (2021).

    CAS  Google Scholar 

  22. Y. Zhou, Z. Qin, Z. Liang, D. Meng, H. Xu, D.R. Smith, and Y. Liu, Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light Sci. Appl. 10, 138 (2021).

    CAS  Google Scholar 

  23. Z. Li, Y. Cheng, H. Luo, F. Chen, and X. Li, Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J. Alloy. Compd. 925, 166617 (2022).

    CAS  Google Scholar 

  24. Y. Cheng, H. Luo, and F. Chen, Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures. J. Appl. Phys. 127, 214902 (2020).

    CAS  Google Scholar 

  25. F. Ding, Y.X. Cui, X.C. Ge, Y. Jin, and S.L. He, Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012).

    Google Scholar 

  26. Y. Shen, J. Zhang, J. Wang, Y. Pang, H. Ma, and S. Qu, Multistage dispersion engineering in a three-dimensional plasmonic structure for outstanding broadband absorption. Opt. Mater. Express 9, 1539 (2019).

    CAS  Google Scholar 

  27. C.Y. Wang, J.G. Liang, T. Cai, H.P. Li, W.Y. Ji, Q. Zhang, and C.W. Zhang, High-performance and ultra-broadband metamaterial absorber based on mixed absorption mechanisms. IEEE Access 7, 57259 (2019).

    Google Scholar 

  28. R. Zhu, J. Wang, S. Sui, Y. Meng, T. Qiu, Y. Jia, X. Wang, Y. Han, M. Feng, L. Zheng, and S. Qu, Wideband absorbing plasmonic structures via profile optimization based on genetic algorithm. Front Phys. 8, 231 (2020).

    Google Scholar 

  29. J. Yu, W. Jiang, and S. Gong, Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction. IEEE Antennas Wirel. Propag. Lett. 19, 1058 (2020).

    Google Scholar 

  30. S. Zhou, X. Liang, J. Xing, Y. Fan, L. Zhang, D. Li, and E. Li, Ultra-broadband metamaterial absorbers based on spoof surface plasmon polaritons structure. Microw. Opt. Technol. Lett. 64, 489 (2022).

    Google Scholar 

  31. S. Li, P. Wu, H. Xu, Y. Zhou, X. Cao, J. Han, C. Zhang, H. Yang, and Z. Zhang, Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects. Nanoscale Res. Lett. 13, 386 (2018).

    Google Scholar 

  32. X. Begaud, A.C. Lepage, S. Varault, M. Soiron, and A. Barka, Ultra-wideband and wide-angle microwave metamaterial absorber. Materials 11, 2045 (2018).

    Google Scholar 

  33. L. He, L. Deng, Y. Li, H. Luo, J. He, S. Huang, and S. Yan, Design of a multilayer composite absorber working in the P-band by NiZn ferrite and cross-shaped metamaterial. Appl. Phys. A 125, 130 (2019).

    Google Scholar 

  34. Q. Wang and Y. Cheng, Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors. Int J. Electron. Commun. 120, 153198 (2020).

    Google Scholar 

  35. X. Yao, Y. Huang, G. Li, Q. He, H. Chen, X. Weng, D. Liang, J. Xie, and L. Deng, Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures. Int. J. RF Microw. Comput. Aided Eng. 32, 23222 (2022).

    Google Scholar 

  36. P. Chen, X. Kong, J. Han, W. Wang, K. Han, H. Ma, L. Zhao, and X. Shen, Wide-angle ultra-broadband metamaterial absorber with polarization-insensitive characteristics. Chin. Phys. Lett. 38, 027801 (2021).

    CAS  Google Scholar 

  37. K. Chen, X. Luo, G. Ding, J. Zhao, Y. Feng, and T. Jiang, Broadband microwave metamaterial absorber with lumped resistor loading. EPJ Appl. Metamater. 6, 1 (2019).

    Google Scholar 

  38. S. Xie, L. Zhu, Y. Zhang, Z. Ji, and J. Wang, Three-dimensional periodic structured absorber for broadband electromagnetic radiation absorption. Electron. Mater. Lett. 16, 340 (2020).

    CAS  Google Scholar 

  39. X. Zhang, D. Zhang, Y. Fu, S. Li, Y. Wei, K. Chen, X. Wang, and S. Zhuang, 3-D printed swastika-shaped ultrabroadband water-based microwave absorber. IEEE Antennas Wirel. Propag. Lett. 19, 821 (2020).

    Google Scholar 

  40. J. Ning, S. Dong, X. Luo, K. Chen, J. Zhao, T. Jiang, and Y. Feng, Ultra-broadband microwave absorption by ultra-thin metamaterial with stepped structure induced multi-resonances. ResultsPhys. 18, 103320 (2020).

    Google Scholar 

  41. Y. Yang, W. Zhao, Z. Wu, J. Zhao, T. Jiang, K. Chen, and Y. Feng, Three-dimensional lightweight metamaterial with ultra-wideband microwave absorption. Microw. Opt. Technol. Lett. 64, 500 (2022).

    Google Scholar 

  42. J. Xie, S. Quader, F. Xiao, C. He, X. Liang, J. Geng, R. Jin, W. Zhu, and I.D. Rukhlenko, Truly all-dielectric ultra-broadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wirel. Propag. Lett. 18, 536 (2019).

    Google Scholar 

  43. Y. Xiong, F. Chen, Y. Cheng, and H. Luo, Rational design and fabrication of optically transparent broadband microwave absorber with multilayer structure based on indium tin oxide. J. Alloy. Compd. 920, 166008 (2022).

    CAS  Google Scholar 

  44. W. Wang, A. Wang, J. Liang, Z. Wang, J. Jiang, C. Xu, Y. Li, J. Wang, and S. Qu, Design and analysis of a wideband and wide angle 3D metamaterial absorber. J. Phys. D: Appl. Phys. 55, 325302 (2022).

    Google Scholar 

  45. T. Wang, H. He, M. Ding, J. Mao, R. Sun, and L. Sheng, A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability. Chin. Phys. B 31, 037804 (2022).

    Google Scholar 

  46. Y.I. Abdulkarim, H.N. Awlc, F.O. Alkurt, F.F. Muhammadsharif, S.R. Saeed, M. Karaaslan, M. Bakırf, and H. Luo, A thermally stable and polarization insensitive square-shaped water metamaterial with ultra-broadband absorption. J. Market. Res. 13, 1150 (2021).

    Google Scholar 

  47. W. Chen, H. Liu, Y. Jia, Y. Liu, and X. Wang, Ultra-wideband low-scattering metamaterial based on combination of water absorber and polarization rotation metasurface. Int. J. RF Microw. Comput. Aided Eng. 32, 23260 (2022).

    Google Scholar 

  48. Y. Cheng, J. Liu, F. Chen, H. Luo, and X.G. Li, Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A 402, 127345 (2021).

    CAS  Google Scholar 

  49. Y. Cheng and J. Zhao, Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Phys. Scr. 97, 095508 (2022).

    Google Scholar 

  50. D.R. Yang, Y.Z. Cheng, F. Chen, H. Luo, and L. Wu, Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diam. Relat. Mater. 131, 109605 (2023).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YW, YC: Conceptualization, Methodology, Software, Writing—Original Draft, Writing—Review Editing. YL, FL, QW: Software, Data Curation. Writing—Review Editing. JW, BL, BZ: Software, Formal analysis. Investigation, Supervision.

Corresponding author

Correspondence to Jijun Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, Y., Li, Y. et al. Ultra-broadband 3D Metamaterial Microwave Absorber Based on Split-Ring Structure Loaded with Resistors and Magnetic Material. J. Electron. Mater. 52, 6699–6707 (2023). https://doi.org/10.1007/s11664-023-10598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10598-1

Keywords

Navigation