Skip to main content
Log in

Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The present report focuses on the successful synthesis of La0.7Ca0.3−xAgxMnO3 (x = 0, 0.10, 0.15, 0.20, and 0.30) polycrystalline manganite samples through a soft chemical polymeric precursor route and subsequent impact of Ag doping and grain size on their magnetotransport features. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses reveal that Ag doping leads to a phase transformation from the orthorhombic phase to the rhombohedral phase (for x ≥ 15%). Furthermore, it shows that the insulator–metal transition temperature (TIM) and paramagnetic–ferromagnetic (PM-FM) transition temperature (TC) increase with Ag doping concentration and also with the sintering temperature. The prime factors leading to the enhancement with Ag doping are the well-known oxygenation effect by metallic Ag, which helps to improve the transport properties of La1−xCaxMnO3 (LCMO) manganite, and the increase in the tolerance factor (τ), which in turn leads to the Mn-O-Mn bond angle and the structural disorder near the grain boundaries that weaken the double exchange. The room temperature magnetoresistance values are found to be higher for Ag-doped LCMO samples than for the pristine LCMO. The enhanced ferromagnetic ordering temperature along with low-field magnetoresistance (LFMR) of the as-synthesized Ag-doped LCMO polycrystalline ceramic indicate its potential for device fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.N.R. Rao, and B. Raveau, Colossal Magnetoresistance Charge Ordering and Related Properties of Manganese oxides (Singapore: World Scientific, 1998).

    Book  Google Scholar 

  2. Y. Tokura, and N. Nagaosa, Orbital physics in transition-metal oxides. Science 288, 462 (2000).

    Article  CAS  Google Scholar 

  3. S. Sachdev, Quantum criticality: competing ground states in low dimensions. Science 288, 475 (2000).

    Article  CAS  Google Scholar 

  4. A.A. Belik, R.D. Johnson, and D.D. Khalyavin, The rich physics of a-site-ordered quadruple perovskite manganites AMn7O12. Dalton Trans. 50, 15458 (2021).

    Article  CAS  Google Scholar 

  5. E. Dagotto, H. Takashi, and A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 153 (2001).

    Article  Google Scholar 

  6. Y. Tokura, Critical features of colossal magnetoresistive manganites. Rep. Prog. Phys. 69, 797 (2006).

    Article  CAS  Google Scholar 

  7. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer, 2002).

    Google Scholar 

  8. I.J. Park, C.H. Rhee, C.M. Kim, I.B. Shim, C.K. Kim, and S.J. Kim, Tuning of the magnetocaloric effect in La manganites. J. Korean Phys. Soc. 61, 1817 (2012).

    Article  CAS  Google Scholar 

  9. P. Lampen-Kelley, A.S. Kamzin, K.E. Romachevsky, D.T.M. Hue, H.D. Chinh, H. Srikanth, and M.H. Phan, Mössbauer spectroscopy studies of phase evolution in SrFe12O19/La0.5Ca0.5MnO3 composites. J. Alloys Compd. 636, 323 (2015).

    Article  CAS  Google Scholar 

  10. R. Reddy, R. Rawat, T.G. Reddy, A. Gupta, P.Y. Reddy, and K.R. Reddy, Fe Mössbauer study of La0.67Ca0.33Mn1−xFexO3 CMR system. Hyperfine Interact. 187, 109 (2008).

    Article  CAS  Google Scholar 

  11. L. Damari, J. Pelleg, G. Gorodetsky, C. Koren, V. Markovich, Y.P. Shames, X. Wu, D. Mogilyanski, I. Fita, and A. Wisniewski, J. Appl. Phys. 106, 013913 (2009).

    Article  Google Scholar 

  12. A.H. Dhahri, M. Jemmali, E. Dhahri, and E.K. Hlil, Electrical transport and giant magnetoresistance in La0.75 Sr0.25 Mn1-xCrxO3 (0.15, 0.20 and 0.25). Dalton Trans. 44(12), 5620 (2015). https://doi.org/10.1039/C4DT03662J.

    Article  CAS  Google Scholar 

  13. P.K. Siwach, H.K. Singh, and O.N. Srivastava, Low field magnetotransport in manganites. J. Phys.: Condens. Matter 20, 273201 (2008).

    CAS  Google Scholar 

  14. X. Qing, H. Li, C. Zhong, P. Zhou, Z. Dong, and J. Liu, Magnetism and spin exchange coupling in strained monolayer CrOCl. Phys. Chem. Chem. Phys. 22, 17255 (2020).

    Article  CAS  Google Scholar 

  15. M. Kar, and S. Ravi, Electrical resistivity and ac susceptibility studies in La1–xAgxMnO3. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 110, 46 (2004).

    Article  Google Scholar 

  16. J.B. Christopher, S. Christopher, B.R. Goldsmith, R. Ouyang, C.B. Musgrave, and M. Scheffler, New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 5, 0693 (2019).

    Google Scholar 

  17. X. Weiren, L. Kai, T. Qingkai, Y. Li, X. Yuting, W. Zhiwei, and Z. Xinhua, Comparative studies on the structural, magnetic, and optical properties of perovskite Ln0.67Ca0.33MnO3 (Ln = La, Pr, Nd, and Sm) manganite nanoparticles synthesized by sol–gel method. AIP Adv. 11(3), 035007 (2021).

    Article  Google Scholar 

  18. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, C.L. Zhang, J.J. Du, Y.P. Sun, and J. Fang, Effect of Ag substitution on the transport property and magnetoresistance of LaMnO3. J. Magn. Magn. Mater. 248, 26 (2002).

    Article  CAS  Google Scholar 

  19. P. Hervieu, A. Maignan, C. Martin, and B. Raveau, Structural and magnetic phase diagram and room temperature CMR effect of La1−xAgxMnO3. Solid State Commun. 126, 229 (2003).

    Article  Google Scholar 

  20. D. Zhu, A. Maignan, M. Hervieu, S. Hervieu, and B. Raveau, Room temperature magnetoresistance in Ln2/3A1/3MnO3 manganites. Solid State Commun. 127, 551 (2003).

    Article  CAS  Google Scholar 

  21. S. Das, and T.K. Dey, Electrical conductivity and low field magnetoresistance in polycrystalline La1−xKxMnO3 pellets prepared by pyrophoric method. Solid State Commun. 134, 837 (2005).

    Article  CAS  Google Scholar 

  22. S. Bhattacharya, A. Banarjee, S. Pal, P. Chatterjee, P.M. Mukherjee, and B.K. Chaudhuri, Transport properties of Na doped La1−xCaxyNayMnO3 measured in a pulsed magnetic field. J. Phys. Condens. Matter 14, 10221 (2002).

    Article  CAS  Google Scholar 

  23. N. Khare, H.K. Singh, P.K. Siwach, U.P. Mohrail, A.K. Gupta, and O.N. Srivastava, Improvement in properties of La0.67Ca0.33MnO3 polycrystalline film due to silver addition. J. Phys. D: Appl. Phys. 34(5), 673 (2001).

    Article  CAS  Google Scholar 

  24. N. Boora, R. Ahmad, P. Rani, P.K. Maheshwari, A. Khosla, S. Bansal, V.P.S. Awana, and A.K. Hafiz, Room temperature synthesis of colossal magneto-resistance of La2/3Ca1/3MnO3: Ag0.10 composite. ECS J. Solid State Sci. Technol. 10(2), 027006 (2021).

    Article  CAS  Google Scholar 

  25. M. Bhat, A. Modi, T. Patel, S. Bhattacharya, N. Gaur, and G. Okram, Impact of silver substitution on the magnetotransport and thermal behavior of polycrystalline Sm0.55Sr0.45−xAgxMnO3 (x = 0 & 0.15) manganites. J. Alloys Compd. 230, 691 (2016).

    Google Scholar 

  26. P.K. Siwach, V.P.S. Awana, H. Kishan, R. Prasad, H.K. Singh, S. Balamurugan, E. Takayama-Muromachi, and O.N. Srivastava, Room temperature magneto-resistance and temperature coefficient of resistance in La0.7Ca0.3−xAgxMnO3 thin films. J. Appl. Phys. 101(7), 073912 (2007).

    Article  Google Scholar 

  27. S. Kato, K. Takagi, and M. Ogasawara, Synthesis of delafossite-type Ag0.9MnO2 by the precipitation method at room temperature. ACS Omega 4(6), 9763 (2019).

    Article  CAS  Google Scholar 

  28. H.K. Singh, N. Khare, P.K. Siwach, and O.N. Srivastava, Low-field magneto-resistance of spray pyrolysis deposited La0.67Ca0.33MnO3 thin films. J. Phys. D: Appl. Phys. 33(8), 921 (2000).

    Article  CAS  Google Scholar 

  29. P.K. Siwach, H.K. Singh, and O.N. Srivastava, Influence of strain relaxation on magnetotransport properties of epitaxial La0.7Ca0.3MnO3 films. J. Phys.: Condens. Matter 18(43), 9783 (2006).

    CAS  Google Scholar 

  30. N. Shah, S.P. Solanki, A. Ravalia, and D.G. Kuberkar, Size effects in magnetotransport in sol–gel grown nanostructured manganites. Appl. Nanosci. 5, 135 (2015).

    Article  CAS  Google Scholar 

  31. J. Sang-Chae, Y. Byung-Kwon, K. Kwan-Hyeong, and L. Suk-Joong, Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3. J. Adv. Ceram. 3, 76 (2014).

    Article  Google Scholar 

  32. P. Dey, and T.K. Nath, Effect of grain size modulation on the magneto- and electronic-transport properties of La0.7Ca0.3MnO3 nanoparticles: the role of spin-polarized tunneling at the enhanced grain surface. Phys. Rev. B 73, 214425 (2006).

    Article  Google Scholar 

  33. A. Gamzatov, A. Batdalov, L. Khanov, A. Mankevich, and A.R. Kaul, Influence of grain boundaries on resistivity of manganites La1-xKxMnO3. Phys. Solid State 54, 617 (2012).

    Article  CAS  Google Scholar 

  34. P. Raychaudhuri, K. Seshadri, P. Taneja, S. Bandyopadhyay, P. Ayyub, A.K. Nigam, and R. Pinto, Spin-polarized tunneling in the half-metallic ferromagnets La0.72-xHoxSr0.3MnO3 experiment and theory. Phys. Rev. B 59, 13921 (1999).

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Nanoscience Lab, Department of Physics, BHU-Varanasi, for access to various characterization/measurement facilities employed in the present study. Moreover, the authors express their gratitude to Dr H K Singh and P K Siwach (CSIR- National Physical Laboratory, New Delhi) for their support through discussion on various issues concerning the results.

Author information

Authors and Affiliations

Authors

Contributions

PS; Conceptualization, Methodology, Investigation, writing, AKS; Methodology, Investigation, writing, JS; Investigation, Analyzing the data, AS; Conceptualization, Supervision, Writing & Editing. UPT: Review, Revision and Editing.

Corresponding authors

Correspondence to Jai Singh or Amit Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Singh, A.K., Tyagi, U.P. et al. Enhanced Magnetotransport Properties of Ag-doped La0.7Ca0.3-xAgxMnO3 Polycrystalline Ceramics. J. Electron. Mater. 52, 6425–6435 (2023). https://doi.org/10.1007/s11664-023-10595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10595-4

Keywords

Navigation