Skip to main content

Advertisement

Log in

Eggshell Waste-Derived Carbon Composite with Calcium Bismuth Oxide for Energy Storage Application

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Waste biomass-derived carbon materials are an attractive eco-friendly material. Biomass-derived carbon materials have received increasing attention due to the demand for renewable energy. In this work, abundantly available waste eggshell membrane was converted into carbon material and activated by KOH. The eggshell membrane-derived activated carbon (EgC) was mixed with calcium bismuth oxide (CBO) to form a composite material (EgC/CBO). Various characterization techniques were used to confirm the synthesized materials, including x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and Raman spectroscopy. The electrochemical properties of the synthesized materials EgC, CBO, and (EgC/CBO) were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The EgC/CBO electrode material exhibited a good specific capacitance value of 222F/g at 1 A/g. The composite material also exhibited a long cyclic stability, up to 5000 cycles at 5 A/g. The present study clearly confirms that the EgC/CBO material can be employed as a potential electrode material for electrochemical supercapacitor energy storage applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Zhou and Y. Wang, Sci. Technol. Adv. Mater. 21, 787 (2020).

    CAS  Google Scholar 

  2. S.Y. Foong, R.K. Liew, Y. Yang, Y.W. Cheng, P.N. Yek, W.A. Mahari, X.Y. Lee, C.S. Han, D.V. Vo, and Q. Van Le, Chem. Eng. J. 389, 124401 (2020).

    CAS  Google Scholar 

  3. C. Senthil and C.W. Lee, Renew. Sustain. Energy Rev. 137, 110464 (2021).

    CAS  Google Scholar 

  4. S. Sarkar, A. Arya, U.K. Gaur, and A. Gaur, Biomass Bioenergy 142, 105730 (2020).

    CAS  Google Scholar 

  5. B. Sun, S. Zhu, S. Mao, P. Zheng, Y. Xia, F. Yang, M. Lei, and Y. Zhao, J. Colloid Interface Sci. 513, 774 (2018).

    CAS  Google Scholar 

  6. M. Biswal, A. Banerjee, M. Deo, and S. Ogale, Energy Environ. Sci. 6, 1249 (2013).

    CAS  Google Scholar 

  7. L. Cui, Y. Yang, C. Cheng, L. Xu, Y. Li, M. Jia, X. Dun, and X. Jin, J. Wood Chem. Technol. 39, 343 (2019).

    CAS  Google Scholar 

  8. K. Subramani, N. Sudhan, M. Karnan, and M. Sathish, ChemistrySelect 2, 11384 (2017).

    CAS  Google Scholar 

  9. R.J. Wesley, A. Durairaj, S. Ramanathan, A. Obadiah, R. Justinabraham, X. Lv, and S. Vasanthkumar, Diam. Relat. Mater. 115, 108360 (2021).

    CAS  Google Scholar 

  10. M. Dwiyaniti, A.E., R.M., Barruna Naufal, I. Subiyanto, R. Setiabudy, C. Hudaya, in IOP Conf. Ser. Mater. Sci. Eng. 909, 012018 (2020)

  11. Y. Gao, L. Li, Y. Jin, Y. Wang, C. Yuan, Y. Wei, G. Chen, J. Ge, and H. Lu, Appl. Energy 153, 41 (2015).

    CAS  Google Scholar 

  12. Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, and H. Xu, Mater. Chem. Phys. 80, 704 (2003).

    CAS  Google Scholar 

  13. K.C. Lee, M.S.W. Lim, Z.Y. Hong, S. Chong, T.J. Tiong, G.T. Pan, and C.M. Huang, Energies 14, 4546 (2021).

    CAS  Google Scholar 

  14. V. Kumbar, S. Nedomova, J. Trnka, J. Buchar, and R. Pytel, Poult. Sci. 95, 1693 (2016).

    CAS  Google Scholar 

  15. D.R. Jones, G.E. Ward, P. Regmi, and D.M. Karcher, Poult. Sci. 97, 716 (2018).

    CAS  Google Scholar 

  16. R. Zhang, X. Gu, Y. Liu, D. Hua, M. Shao, Z. Gu, J. Wu, B. Zheng, W. Zhang, S. Li, F. Huo, and W. Huang, Appl. Surf. Sci. 512, 145740 (2020).

    CAS  Google Scholar 

  17. E. Ferraz, J.A.F. Gamelas, J. Coroado, C. Monteiro, and F. Rocha, Mater. Struct. Constr. 51, 115 (2018).

    CAS  Google Scholar 

  18. A.M. Muliwa, T.Y. Leswifi, and M.S. Onyango, Miner. Eng. 122, 241 (2018).

    CAS  Google Scholar 

  19. V.K. Singh, M.H. Chevli, S.M. Tauseef, and N.A. Siddiqui, in Adv. Health Environ. Saf.: Select Proc. HSFEA 2016 2018 p. 327 (2018).

  20. S. Mignardi, L. Archilletti, L. Medeghini, and C. De Vito. Sci. Rep. 10, 2436 (2020).

    CAS  Google Scholar 

  21. B. Pant, M. Park, H.Y. Kim, and S.J. Park, J. Alloys Compd. 699, 73 (2017).

    CAS  Google Scholar 

  22. Q. Wang, Z. Jiang, Y. Wang, D. Chen, and C. Daimei. J. Nanopart. Res. 11, 375 (2009).

    CAS  Google Scholar 

  23. M. Al-Ghouti and M. Khan. J. Environ. Manage. 207, 405 (2018).

  24. S. Lu, M. Hummel, Z. Gu, Y. Gu, Z. Cen, L. Wei, Y. Zhou, C. Zhang, and C. Yang, Int. J. Hydrog. Energy 44, 16144 (2019).

    CAS  Google Scholar 

  25. S. Park, K.S. Choi, D. Lee, D. Kim, K.T. Lim, K.H. Lee, H. Seonwoo, and J. Kim, Biosyst. Eng. 151, 446 (2016).

    Google Scholar 

  26. S. Pramanik, S. Chatterjee, G. Suresh Kumar, and P. Sujatha Devi. Phys. Chem. Chem. Phys. 20, 20476 (2018).

    CAS  Google Scholar 

  27. A. Riaz, M.R. Sarker, M.H.M. Saad, and R. Mohamed, Sensors 21, 5041 (2021).

    CAS  Google Scholar 

  28. R.J. Wesley, A. Durairaj, S. Ramanathan, R.J. Abraham, A. Obadiah, S. Ramasundaram, X. Lv, and S. Vasanthkumar, Biomass Convers. Biorefinery (2022). https://doi.org/10.1007/s13399-021-02206-1.

    Article  Google Scholar 

  29. D. Mohanadas and Y. Sulaiman, J. Power Sources 523, 231029 (2022).

    CAS  Google Scholar 

  30. K. Wickramaarachchi and M. Minakshi, J. Energy Storage 56, 106099 (2022).

    Google Scholar 

  31. G. Veerapandi, S. Prabhu, R. Ramesh, R. Govindan, and C. Sekar, J. Energy Storage 48, 104051 (2022).

    Google Scholar 

  32. X. Wang, W. Wu, H. Ju, T. Zou, Z. Qiao, H. Gong, and H. Wang. Mat. Res. Express 3, 125002 (2016).

    Google Scholar 

  33. A. Durairaj, T. Sakthivel, S. Ramanathan, A. Obadiah, and S. Vasanthkumar, Cellulose 26, 3313 (2019).

    CAS  Google Scholar 

  34. X. Ji, Q. Wang, J.F. Lu, and D. Zhang, Ceram. Int. 46, 13630 (2020).

    CAS  Google Scholar 

  35. M. Mohammadi, A. Tavajjohi, A. Ziashahabi, N. Pournoori, S. Muhammadnejad, H. Delavari, and R. Poursalehi, Micro Nano Lett. 14, 239 (2019).

    CAS  Google Scholar 

  36. M.M. Sivalingam and K. Balasubramanian, Appl. Phys. A Mater. Sci. Process. 123, 281 (2017).

    Google Scholar 

  37. A. Gowrisankar, A.L. Sherryn, and T. Selvaraju, Appl. Surf. Sci. Adv. 3, 100054 (2021).

    Google Scholar 

  38. C. Wan, Y. Jiao, and J. Li, RSC Adv. 6, 64811 (2016).

    CAS  Google Scholar 

  39. M. Li, J. Yu, X. Wang, and Z. Yang, Appl. Surf. Sci. 530, 147230 (2020).

    CAS  Google Scholar 

  40. H. Shao, N. Padmanathan, D. McNulty, C. O’Dwyer, K.M. Razeeb, and A.C.S. Appl, Energy Mater. 2, 569 (2019).

    CAS  Google Scholar 

  41. T. Nanoporous and N.O.H.T. Supercapacitors, ACS Nano 8, 9622 (2014).

    Google Scholar 

  42. A.P. Khedulkar, B. Pandit, T.A. Bui, H.L. Tran, and R.A. Doong, J. Colloid Interface Sci. 623, 845 (2022).

    Google Scholar 

  43. W. Zhong, H. Sun, J. Pan, Y. Zhang, X. Yan, Y. Guan, W. Shen, and X. Cheng, Mater. Sci. Semicond. Process. 127, 105715 (2021).

    CAS  Google Scholar 

  44. L. Gu, L. Qian, Y. Lei, Y. Wang, J. Li, H. Yuan, and D. Xiao, J. Power Sources 261, 317 (2014).

    CAS  Google Scholar 

  45. P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, and S.J. Kim, J. Alloys Compd. 765, 1041 (2018).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the management and administration of Karunya Institute of Technology and Sciences for their support and help. The authors are grateful to Department of Science and Technology (DST/TDT/WM/2019/73G), Govt. of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Vasanthkumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesley, R.J., Sowmya, S., Durairaj, A. et al. Eggshell Waste-Derived Carbon Composite with Calcium Bismuth Oxide for Energy Storage Application. J. Electron. Mater. 52, 6503–6513 (2023). https://doi.org/10.1007/s11664-023-10592-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10592-7

Keywords

Navigation