Skip to main content

Advertisement

Log in

Effect of Cerium Oxide and rGO Conjugation on the Electrochemical Energy Storage Traits of V2O5 Nanomaterials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Vanadium-based hybrid capacitors are highly promising and emerging candidates for energy storage and battery applications on a pilot scale owing to collective complementary advantages. In this study, vanadium pentoxide (V2O5) and its composites with reduced graphene oxide (rGO) and cerium oxide (CeO2) were successfully synthesized by employing the hydrothermal method. The structural, morphological, and optical characteristics were investigated by X-ray diffraction (XRD), scanning electron microscopy, and photoluminescence, respectively. The crystallite size calculated from the XRD pattern was found in the range of 17 nm to 20 nm approximately. X-ray photoelectron spectroscopy (XPS) analysis indicated the existence of variable oxidation states of Ce (+3 and +4) in the V2O5/CeO2 composite materials. The V2O5/CeO2 nanocomposite material showed excellent electrochemical response as compared to V2O5/rGO and bare V2O5. The V2O5/CeO2 materials demonstrated a higher specific capacity (Qs) of 308 C/g as compared to V2O5/rGO (200 C/g) and V2O5 (190 C/g) at the current density of 1 A/g. Theoretical investigations using Dunn’s model showed that the capacitive behavior of pristine V2O5 was changed into a hybrid (capacitive and battery) and battery type when blended with rGO and CeO2, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater. Today 17, 110–121 (2014).

    CAS  Google Scholar 

  2. S.S. Haider, S. Dad, S. Zakar, and M.Z. Iqbal, Mechanistic scrutinizing the charge storage phenomena of battery-grade Mn-Co-S electrodes. Mater. Res. Bull. 156, 111953 (2022).

    CAS  Google Scholar 

  3. D. Larcher and J.M. Tarascon, towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    CAS  Google Scholar 

  4. S. Alam and M.Z. Iqbal, Nickel-manganese phosphate: an efficient battery-grade electrode for supercapattery devices. Ceram. Int. 47, 11220–11230 (2021).

    CAS  Google Scholar 

  5. M.Z. Iqbal, U. Aziz, M.W. Khan, S. Siddique, and M. Alzaid, Strategies to enhance the electrochemical performance of strontium-based electrode materials for battery-supercapacitor applications. J. Electroanal. Chem. 924, 116868 (2022).

    CAS  Google Scholar 

  6. M.Z. Iqbal, M.W. Khan, M. Shaheen, S. Siddique, S. Aftab, M. Alzaid, and S. Sharif, Cobalt intercalated redox active 1, 2, 4, 5-benzene-tetra-carboxylic acid-pyridine-3, 5-dicarboxylic acid bi-linker organic framework for state-of-the-art battery-supercapacitor hybrids. Mater. Today Sustain. 21, 100286 (2022).

    Google Scholar 

  7. M.Z. Iqbal, U. Abbasi, and M. Alzaid, Cobalt manganese phosphate and sulfide electrode materials for potential applications of battery-supercapacitor hybrid devices. J. Energy Storage 50, 104632 (2022).

    Google Scholar 

  8. M.Z. Iqbal, S. Siddique, M. Shaheen, S. Alam, and M. Alzaid, Role of Ag and Cu as an interfacial layer on the electrochemical performance of Ni/Ag/Co3(PO4)2 and Ni/Cu/Co3(PO4)2 electrodes for hybrid energy storage devices. Ceram. Int. 48, 15686–15694 (2022).

    CAS  Google Scholar 

  9. S.S. Haider, S. Zakar, M.Z. Iqbal, and S. Dad, Battery-type electrodeposited ternary metal sulfides electrodes for advanced hybrid energy storage devices. J. Electroanal. Chem. 904, 115881 (2022).

    CAS  Google Scholar 

  10. D. Deng, N. Chen, X. Xiao, S. Du, and Y. Wang, Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23, 121–129 (2017).

    CAS  Google Scholar 

  11. S.D. Perera, B. Patel, J. Bonso, M. Grunewald, J.P. Ferraris, and K.J. Balkus Jr., Vanadium oxide nanotube spherical clusters prepared on carbon fabrics for energy storage applications. ACS Appl. Mater. Inter. 3, 4512–4517 (2011).

    CAS  Google Scholar 

  12. A. Qian, Y. Pang, G. Wang, Y. Hao, Y. Liu, H. Shi, C.-H. Chung, Z. Du, and F. Cheng, Pseudocapacitive charge storage in MXene–V2O5 for asymmetric flexible energy storage devices. ACS Appl. Mater. Inter. 12, 54791–54797 (2020).

    CAS  Google Scholar 

  13. A. Sakunthala, M. Reddy, S. Selvasekarapandian, B. Chowdari, and P.C. Selvin, Energy storage studies of bare and doped vanadium pentoxide,(V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries. Energy Environ. Sci. 4, 1712–1725 (2011).

    CAS  Google Scholar 

  14. H.T. Das, S. Dutta, N. Das, P. Das, A. Mondal, and M. Imran, Recent trend of CeO2-based nanocomposites electrode in supercapacitor: a review on energy storage applications. J. Energy Storage 50, 104643 (2022).

    Google Scholar 

  15. S. Korkmaz, F.M. Tezel, and I. Kariper, Synthesis and characterization of GO/V2O5 thin film supercapacitor. Syn. Met. 242, 37–48 (2018).

    CAS  Google Scholar 

  16. X. Du, S. Wang, Y. Liu, M. Lu, K. Wu, and M. Lu, Self-assembly of free-standing hybrid film based on graphene and zinc oxide nanoflakes for high-performance supercapacitors. J. Solid State Chem. 277, 441–447 (2019).

    CAS  Google Scholar 

  17. Q. Zhang, X. Wu, Q. Zhang, F. Yang, H. Dong, J. Sui, and L. Dong, One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage. J. Electroanal. Chem. 837, 108–115 (2019).

    CAS  Google Scholar 

  18. N.S. Arul, D. Mangalaraj, R. Ramachandran, A.N. Grace, and J.I. Han, Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J. Mater. Chem. 3, 15248–15258 (2015).

    CAS  Google Scholar 

  19. S.J. Zhu, J.Q. Jia, T. Wang, D. Zhao, J. Yang, F. Dong, Z.G. Shang, and Y.X. Zhang, Rational design of octahedron and nanowire CeO2@MnO2 core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem. Commun. 51, 14840–14843 (2015).

    CAS  Google Scholar 

  20. S. Chandra Sekhar, G. Nagaraju, D. Narsimulu, B. Ramulu, S.K. Hussain, and J.S. Yu, Graphene matrix sheathed metal vanadate porous nanospheres for enhanced longevity and high-rate energy storage devices. ACS Appl. Mater. Interfaces 12, 27074–27086 (2020).

    CAS  Google Scholar 

  21. B. Hu, C. Guo, C. Xu, Y. Cen, J. Hu, Y. Li, S. Yang, Y. Liu, D. Yu, and C. Chen, Rational construction of V2O5@rGO with enhanced pseudocapacitive storage for high-performance flexible energy storage device. ChemElectroChem 6, 5845–5855 (2019).

    CAS  Google Scholar 

  22. H. Zhao, L. Pan, S. Xing, J. Luo, and J. Xu, Vanadium oxides–reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J. Power Sources 222, 21–31 (2013).

    CAS  Google Scholar 

  23. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, and P. Norouzi, A high performance supercapacitor based on a ceria/graphene nanocomposite synthesized by a facile sonochemical method. RSC Adv. 5, 46050–46058 (2015).

    CAS  Google Scholar 

  24. H. Heydari and M.B. Gholivand, A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite. Appl. Phys. A 123, 1–10 (2017).

    CAS  Google Scholar 

  25. S. Gupta, B. Aberg, and S. Carrizosa, Hydrothermal synthesis of vanadium pentoxides–reduced graphene oxide composite electrodes for enhanced electrochemical energy storage. MRS Adv. 1, 3049–3055 (2016).

    CAS  Google Scholar 

  26. P.M. Junais, M. Athika, G. Govindaraj, and P. Elumalai, Supercapattery performances of nanostructured cerium oxide synthesized using polymer soft-template. J. Energy Storage 28, 101241 (2020).

    Google Scholar 

  27. B. Pandit, D.P. Dubal, and B.R. Sankapal, Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242, 382–389 (2017).

    CAS  Google Scholar 

  28. A.D. Raj, T. Pazhanivel, P.S. Kumar, D. Mangalaraj, D. Nataraj, and N. Ponpandian, Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537 (2010).

    Google Scholar 

  29. A.K. Kumawat, R. Nathawat, S.S. Rathore, and A.K. Mukhopadhyay, Band gap tuning possibilities in vanadium oxide. Mater. Today Proc. 43, 2939–2943 (2021).

    CAS  Google Scholar 

  30. P.K. Boruah, S. Szunerits, R. Boukherroub, and M.R. Das, Magnetic Fe3O4@rGO/V2O5 nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere 191, 503–513 (2018).

    CAS  Google Scholar 

  31. T.K. Le, M. Kang, and S.W. Kim, Relation of photoluminescence and sunlight photocatalytic activities of pure V2O5 nanohollows and rGO/V2O5 nanocomposites. Mater. Sci. Semicond. Process. 100, 159–166 (2019).

    CAS  Google Scholar 

  32. M. Kang, M. Chu, S.W. Kim, and J.-W. Ryu, Optical and electrical properties of V2O5 nanorod films grown using an electron beam. Thin Solid Films 547, 198–201 (2013).

    CAS  Google Scholar 

  33. A. Othonos, C. Christofides, and M. Zervos, Ultrafast transient spectroscopy and photoluminescence properties of V2O5 nanowires. Appl. Phys. Lett. 103, 133112 (2013).

    Google Scholar 

  34. M.R. Khawar, N.A. Shad, S. Hussain, Y. Javed, M.M. Sajid, A. Jilani, M. Faheem, and A. Asghar, Cerium oxide nanosheets-based tertiary composites (CeO2/ZnO/ZnWO4) for supercapattery application and evaluation of faradic & non-faradic capacitive distribution by using Donn’s model. J. Energy Storage 55, 105778 (2022).

    Google Scholar 

  35. C.Y. Foo, A. Sumboja, D.J.H. Tan, J. Wang, and P.S. Lee, Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv. Energy Mater. 4, 1400236 (2014).

    Google Scholar 

  36. H. Mohan, J.M. Lim, S.W. Lee, M. Cho, Y.J. Park, K.K. Seralathan, and B.T. Oh, V2O5/rGO/Pt nanocomposite on oxytetracycline degradation and pharmaceutical effluent detoxification. J. Chem. Technol. Biotechnol. 95, 297–307 (2020).

    CAS  Google Scholar 

  37. X. Gu, J. Ge, H. Zhang, A. Auroux, and J. Shen, Structural, redox and acid–base properties of CeO2/V2O5 catalysts. Thermochim. Acta 451, 84–93 (2006).

    CAS  Google Scholar 

  38. P. Liu, K. Bian, K. Zhu, Y. Xu, Y. Gao, H. Luo, L. Lu, J. Wang, J. Liu, and G. Tai, Ultrathin nanoribbons of in situ carbon-coated V3O7·H2O for high-energy and long-life Li-ion batteries: synthesis, electrochemical performance, and charge–discharge behavior. ACS Appl. Mater. Interfaces 9, 17002–17012 (2017).

    CAS  Google Scholar 

  39. A. Asghar, M.I. Yousaf, N.A. Shad, M. Munir Sajid, A.M. Afzal, Y. Javed, A. Razzaq, M. Shariq, M. Sarwar, and S.K. Sharma, enhanced electrochemical performance of hydrothermally synthesized NiS/ZnS composites as an electrode for super-capacitors. J. Clust. Sci. 33, 2325–2335 (2022).

    CAS  Google Scholar 

  40. K. Thiagarajan, J. Theerthagiri, R. Senthil, P. Arunachalam, J. Madhavan, and M.A. Ghanem, Synthesis of Ni3V2O8@ graphene oxide nanocomposite as an efficient electrode material for supercapacitor applications. J. Solid State Electrochem. 22, 527–536 (2018).

    CAS  Google Scholar 

  41. M.Z. Iqbal, J. Khan, S. Alam, R. Ali, M.J. Iqbal, A.M. Afzal, and S. Aftab, Enhanced electrochemical performance of battery-grade cobalt phosphate via magnetron sputtered copper interfacial layer for potential supercapattery applications. Int. J. Energy Res. 45, 18658–18669 (2021).

    CAS  Google Scholar 

  42. H. Huang, Pseudocapacitive Materials for High-power Li+/Na+ Storage (Zurich: ETH Zurich, 2019).

    Google Scholar 

  43. A. Kim, G. Kalita, J.H. Kim, and R. Patel, Recent development in vanadium pentoxide and carbon hybrid active materials for energy storage devices. Nanomaterials 11, 3213 (2021).

    CAS  Google Scholar 

  44. T. Kshetri, D.T. Tran, T.I. Singh, N.H. Kim, K. Lau, and J.H. Lee, Effects of the composition of reduced graphene oxide/carbon nanofiber nanocomposite on charge storage behaviors. Compos. B. Eng. 178, 107500 (2019).

    CAS  Google Scholar 

  45. H. Zhou, J. Xi, Z. Li, Z. Zhang, L. Yu, L. Liu, X. Qiu, and L. Chen, CeO2 decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. RSC Adv. 4, 61912–61918 (2014).

    CAS  Google Scholar 

  46. Y. Wei, H. Chen, H. Jiang, B. Wang, H. Liu, Y. Zhang, and H. Wu, Biotemplate-based engineering of high-temperature stable anatase TiO2 nanofiber bundles with impregnated CeO2 nanocrystals for enhanced lithium storage. ACS Sustain. Chem. Eng. 7, 7823–7832 (2019).

    CAS  Google Scholar 

  47. Z. Maliha, M. Rani, R. Neffati, A. Mahmood, M.Z. Iqbal, and A. Shah, Investigation of copper/cobalt MOFs nanocomposite as an electrode material in supercapacitors. Int. J. Energy Res. 46, 17404–17415 (2022).

    CAS  Google Scholar 

  48. H.T.H. Rana, N.A. Shad, S. Hussain, A. Jilani, M. Umair, M.M. Sajid, M. Faheem, A. Shah, Y. Jamil, and M.A. Shafique, Dysprosium doped calcium tungstate as an efficient electrode material for the electrochemical energy storage devices. Ceram. Int. 49, 18896–18905 (2023).

    Google Scholar 

  49. A.E. Elkholy, F.E.-T. Heakal, and N.K. Allam, A facile electrosynthesis approach of amorphous Mn-Co-Fe ternary hydroxides as binder-free active electrode materials for high-performance supercapacitors. Electrochim. Acta 296, 59–68 (2019).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial assistance from the Higher Education Commission (HEC) of Pakistan for providing funds under NRPU Research Project No. 7487/Punjab/ NRPU/R&D/HEC/ 2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naveed Akhtar Shad or Sumara Ashraf.

Ethics declarations

Conflict of interest

The authors have no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarwar, Z., Umair, M., Javed, Y. et al. Effect of Cerium Oxide and rGO Conjugation on the Electrochemical Energy Storage Traits of V2O5 Nanomaterials. J. Electron. Mater. 52, 6578–6593 (2023). https://doi.org/10.1007/s11664-023-10587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10587-4

Keywords

Navigation