Skip to main content
Log in

Crystal Structural and Microwave Dielectric Properties of Y2.97Re0.03Al5O12 (Re = La, Sm, Gd, Er, Yb) Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Y2.97Re0.03Al5O12 ceramics have been prepared with Y3+ ions substituted by rare-earth ions (Re = La, Sm, Gd, Er, Yb). We have analyzed the phase composition, crystal structure, surface micromorphology, and microwave dielectric properties of the Y2.97Re0.03Al5O12 ceramics. The results of x-ray diffraction and Rietveld refinement show that with a doping amount of x = 0.03, a stable Y3Al5O12 phase can be formed, while the crystal structure is slightly changed. Samples of each component illustrate different characteristics of grain boundaries that influence the microwave dielectric properties. Based on the Phillips–Van Vechten–Levine (P-V-L) theory, the ionicity, lattice energy, and bond energy of Y2.97Re0.03Al5O12 ceramics have been calculated to characterize the relative dielectric constant, quality factor, and temperature coefficient, respectively. Among all the samples, La3+ ions substitution significantly improves the quality factor of the YAG ceramics . Optimal microwave dielectric properties (εr = 10.73, Q × f = 178102 GHz, τf = − 35.18 ppm/°C) of Y2.97La0.03Al5O12 ceramics were prepared at 1700 °C for 9 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S.B. Narang, and S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res 11, 316 (2010).

    Google Scholar 

  2. M.T. Sebastian, R. Ubic, and H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392 (2015).

    Article  Google Scholar 

  3. T.A.T Sulong, R.A.M. Osman, M.S. Idris, Trends of microwave dielectric materials for antenna application. in AIP Conference Proceedings. AIP Publishing LLC, 1756(1): 070003 (2016)

  4. J. Lu, M. Prabhu, and J. Song, Optical properties and highly efficient laser oscillation of Nd: YAG ceramics. Appl. Phys. B 71, 469 (2000).

    Article  CAS  Google Scholar 

  5. I. Kagomiya, Y. Matsuda, and K. Kakimoto, Microwave dielectric properties of YAG ceramics. Ferroelectrics 387, 1 (2009).

    Article  CAS  Google Scholar 

  6. Y. Zhou, Z. Yue, and L. Li, Preparation and microwave dielectric properties of TiO2-doped YAG ceramics. Ferroelectrics 407, 69 (2010).

    Article  Google Scholar 

  7. W. Jin, W. Yin, and S. Yu, Microwave dielectric properties of pure YAG transparent ceramics. Mater. Lett. 173, 47 (2016).

    Article  CAS  Google Scholar 

  8. W. Guo, Y. Cao, and Q. Huang, Fabrication and laser behaviors of Nd: YAG ceramic microchips. J. Eur. Ceram. Soc. 31, 2241 (2011).

    Article  CAS  Google Scholar 

  9. A. Sunny, V. Viswanath, and K.P. Surendran, The effect of Ga3+ addition on the sinterability and microwave dielectric properties of RE3Al5O12 (Tb3+, Y3+, Er3+ and Yb3+) garnet ceramics. Ceram. Int. 40, 4311 (2014).

    Article  CAS  Google Scholar 

  10. A. Ikesue, T. Kinoshita, and K. Kamata, Fabrication and optical properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 78, 1033 (1995).

    Article  CAS  Google Scholar 

  11. A. Ikesue, Polycrystalline Nd: YAG ceramics lasers. Opt. Mater. 19, 183 (2002).

    Article  CAS  Google Scholar 

  12. S. Nishiura, S. Tanabe, and K. Fujioka, Properties of transparent Ce: YAG ceramic phosphors for white LED. Opt. Mater. 33, 688 (2011).

    Article  CAS  Google Scholar 

  13. H. Ali, P. Masschelein, and S. Bruyere, White light emission from Sm-doped YAG ceramic controlled by the excitation wavelengths. Opt. Laser Technol. 142, 107223 (2021).

    Article  CAS  Google Scholar 

  14. M. Zhou, H. Chen, and Y. He, Lattice evolution and microwave dielectric properties of La-doped yttrium aluminum garnet ceramics. J. Am. Ceram. Soc. 106, 3252 (2023).

    Article  CAS  Google Scholar 

  15. N. Jiang, W. Lin, and Y. Zhao, Fabrication and kW-level MOPA laser output of planar waveguide YAG/Yb: YAG/YAG ceramic slab. J. Am. Ceram. Soc. 102, 1758 (2019).

    Article  CAS  Google Scholar 

  16. Q. Yang, S. Lu, and B. Zhang, Preparation and laser performance of Nd-doped yttrium lanthanum oxide transparent ceramic. Opt. Mater. 33, 692 (2011).

    Article  CAS  Google Scholar 

  17. C. Chen, Y. Ni, and S. Zhou, Preparation of (Tb0.8Y0.2) 3Al5O12 transparent ceramic as novel magneto-optical isolator material. Chin. Opt. Lett. 11, 021601 (2013).

    Article  Google Scholar 

  18. B.W. Hakki, and P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microwave Theory Techn. 8, 402 (1960).

    Article  Google Scholar 

  19. J. Liu, Q. Liu, and J. Li, Influence of doping concentration on microstructure evolution and sintering kinetics of Er: YAG transparent ceramics. Opt. Mater. 37, 706 (2014).

    Article  Google Scholar 

  20. A. Kareiva, Aqueous sol-gel synthesis methods for the preparation of garnet crystal structure compounds. Mater. Sci. 17, 428 (2011).

    Google Scholar 

  21. A.S. Rini, Diffraction pattern simulation of crystal structure towards the ionic radius changes via vesta program. J. Technomater. Phys. 1, 132 (2019).

    Article  Google Scholar 

  22. J. Liu, L. Wang, and X. Yin, Effect of ionic radius on colossal permittivity properties of (A, Ta) co-doped TiO2 (A = alkaline-earth ions) ceramics. Ceram. Int. 46, 12059 (2020).

    Article  CAS  Google Scholar 

  23. B.H. Toby, R factors in rietveld analysis: how good is good enough? Powder Diffr. 21, 67 (2006).

    Article  CAS  Google Scholar 

  24. K.S.N. Vikrant, W. Rheinheimer, and R.E. García, Electrochemical drag effect on grain boundary motion in ionic ceramics. npj Comput. Mater. 6, 1 (2020).

    Article  Google Scholar 

  25. J. Hostaša, V. Nečina, and T. Uhlířová, Effect of rare earth ions doping on the thermal properties of YAG transparent ceramics. J. Eur. Ceram. Soc. 39, 53 (2019).

    Article  Google Scholar 

  26. M.T. Sebastian, M.A.S. Silva, and A.S.B. Sombra, Measurement of Microwave Dielectric Properties and Factors Affecting them. Microwave Materials and Applications 2V Set (Hoboken: Wiley, 2017), p.1.

    Google Scholar 

  27. E. Talebian, and M. Talebian, A general review on the derivation of Clausius–Mossotti relation. Optik 124, 2324 (2013).

    Article  CAS  Google Scholar 

  28. P. Lawaetz, Valence-band parameters in cubic semiconductors. Phys. Rev. B 4, 3460 (1971).

    Article  Google Scholar 

  29. J.A. Van Vechten, and T.K. Bergstresser, Electronic structures of semiconductor alloys. Phys. Rev. B 1, 3351 (1970).

    Article  Google Scholar 

  30. F. Gao, D. Li, and S. Zhang, Mössbauer spectroscopy and chemical bonds in BaFe12O19 hexaferrite. J. Phys. Condens. Matter 15, 5079 (2003).

    Article  CAS  Google Scholar 

  31. P. Zhang, Y. Zhao, and X. Wang, The relationship between bond ionicity, lattice energy, coefficient of thermal expansion and microwave dielectric properties of Nd (Nb1–x Sbx)O4 ceramics. Dalton Trans. 44, 10932 (2015).

    Article  CAS  Google Scholar 

  32. H. Yang, S. Zhang, and H. Yang, Influence of (Al1/3W2/3)5+ co-substitution for Nb5+ in NdNbO4 and the impact on the crystal structure and microwave dielectric properties. Dalton Trans. 47, 15808 (2018).

    Article  CAS  Google Scholar 

  33. S.S. Batsanov, Dielectric methods of studying the chemical bond and the concept of electronegativity. Russ. Chem. Rev. 51, 684 (1982).

    Article  Google Scholar 

  34. B.F. Levine, Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 59, 1463 (1973).

    Article  CAS  Google Scholar 

  35. H. Li, P. Zhang, and X. Chen, Effect of Zn2+ substitution for Mg2+ in Li3Mg2SbO6 and the impact on the bond characteristics and microwave dielectric properties. J. Alloy. Compd. 832, 155043 (2020).

    Article  CAS  Google Scholar 

  36. B. Tang, Q. Xiang, and Z. Fang, Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg1–xCr2x/3Si2O6 ceramics. Ceram. Int. 45, 11484 (2019).

    Article  CAS  Google Scholar 

  37. Z. Xiong, X. Zhang, and B. Tang, Characterization of structure and properties in CaO-Nd2O3-TiO2 microwave dielectric ceramic modified by Al2O3. Mater. Charact. 176, 111108 (2021).

    Article  CAS  Google Scholar 

  38. J. Li, Y. Han, and T. Qiu, Effect of bond valence on microwave dielectric properties of (1–x) CaTiO3–x (Li0.5La0.5) TiO3 ceramics. Mater. Res. Bull. 47, 2375 (2012).

    Article  CAS  Google Scholar 

  39. P. Zhang, Y. Zhao, and W. Haitao, Bond ionicity, lattice energy, bond energy and microwave dielectric properties of ZnZr (Nb1–xAx)2O8 (A = Ta, Sb) ceramics. Dalton Trans. 44, 16684 (2015).

    Article  CAS  Google Scholar 

  40. Y.R. Luo, Comprehensive Handbook of Chemical Bond Energies (Boca Raton: CRC Press, 2007).

    Book  Google Scholar 

  41. J.X. Bi, C.F. Xing, and C.H. Yang, Phase composition, microstructure and microwave dielectric properties of rock salt structured Li2ZrO3–MgO ceramics. J. Eur. Ceram. Soc. 38, 3840 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Much gratitude to the National Natural Science Foundation of China (No. 62171080) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Tang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Tang, B., Zhou, M. et al. Crystal Structural and Microwave Dielectric Properties of Y2.97Re0.03Al5O12 (Re = La, Sm, Gd, Er, Yb) Ceramics. J. Electron. Mater. 52, 6473–6482 (2023). https://doi.org/10.1007/s11664-023-10586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10586-5

Keywords

Navigation