Skip to main content
Log in

Theoretical Study of Helicity Control of Circular Polarization Waves in Terahertz Region Based on Vanadium Dioxide Metamaterials

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a circular polarization (CP) wave helicity control device in the terahertz (THz) region based on vanadium dioxide (VO2) metamaterials. When VO2 is in the metallic state, the device achieves a CP wave helicity maintenance function with a polarization conversion rate (PCR) of less than 10% in the range of 1.78–2.64 THz. Additionally, the device performs circular-to-linear polarization (CTLP) with an extinction ratio (ER) of less than 0.22 dB in the 3.68–4.10 THz range. However, when VO2 is in the dielectric state, the device achieves a CP wave helicity conversion function with a PCR of greater than 90% in the 2.10–3.32 THz range. Additionally, the device performs CTLP with an ER of less than 0.17 dB in the 1.23–1.35 THz range. We also analyzed the distribution of the three modes’ surface electric field. We believe that the device has potential applications in biosensor, radar, and navigation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. T. Nagatsuma, G. Ducournau, and C.C. Renaud, Advances in terahertz communications accelerated by photonics. Nat. Photon. 10, 371 (2016).

    Article  CAS  Google Scholar 

  2. A. Chen, W. Jiang, Z. Chen, and J. Wang, Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications. Int J. Antennas Propag. 2013, 1 (2013).

    Google Scholar 

  3. M. Khorasaninejad, W.T. Chen, A.Y. Zhu, J. Oh, R.C. Devlin, D. Rousso, and F. Capasso, Multispectral chiral imaging with a metalens. Nano Lett. 16, 4595 (2016).

    Article  CAS  Google Scholar 

  4. I.F. Akyildiz, J.M. Jornet, and C. Han, Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16 (2014).

    Article  Google Scholar 

  5. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, A perfect metamaterial polarization rotator. Appl. Phys. Lett. 103, 171107 (2013).

    Article  Google Scholar 

  6. H. Tao, A.C. Strikwerda, K. Fan, W.J. Padilla, X. Zhang, and R.D. Averitt, Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).

    Article  Google Scholar 

  7. X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, An active metamaterial for polarization manipulating. Adv. Opt. Mater. 2, 945 (2014).

    Article  CAS  Google Scholar 

  8. J. Cheng, F. Fan, and S. Chang, Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control. Nanomaterials 9, 398 (2019).

    Article  CAS  Google Scholar 

  9. J. Li, J. Li, C. Zheng, S. Wang, M. Li, H. Zhao, J. Li, Y. Zhang, and J. Yao, Dynamic control of reflective chiral terahertz metasurface with a new application developing in full grayscale near field imaging. Carbon 172, 189 (2021).

    Article  CAS  Google Scholar 

  10. J. Li, J. Li, Y. Yang, J. Li, Y. Zhang, L. Wu, Z. Zhang, M. Yang, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, H. Dai, and J. Yao, Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging. Carbon 163, 34 (2020).

    Article  CAS  Google Scholar 

  11. J. Tian, R. Ke, R. Yang, and W. Pei, Tunable quad-band perfect metamaterial absorber on the basis of monolayer graphene pattern and its sensing application. Results Phys. 26, 104447 (2021).

    Article  Google Scholar 

  12. B. Zhang, Y. Qi, T. Zhang, Y. Zhang, W. Liu, L. Wang, J. Ding, X. Wang, and Z. Yi, Tunable multi-band terahertz absorber based on composite graphene structures with square ring and Jerusalem cross. Results Phys. 25, 104233 (2021).

    Article  Google Scholar 

  13. J. Li, and R. Yang, Dynamically tuning polarizations of electromagnetic fields based on hybrid skew-resonator-graphene meta-surfaces. Opt. Express 28, 4950 (2020).

    Article  Google Scholar 

  14. Y. Cheng, X. Zhu, J. Li, F. Chen, H. Luo, and L. Wu, Terahertz broadband tunable reflective cross-polarization convertor based on complementary cross-shaped graphene metasurface. Phys. E Low-Dimens. Syst. Nanostruct. 134, 114893 (2021).

    Article  CAS  Google Scholar 

  15. Z. Peng, Z. Zheng, Z. Yu, H. Lan, M. Zhang, S. Wang, L. Li, H. Liang, and H. Su, Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide. Opt. Laser Technol. 157, 108723 (2023).

    Article  CAS  Google Scholar 

  16. R.M.H. Bilal, M.A. Baqir, P.K. Choudhury, M.M. Ali, and A.A. Rahim, On the specially designed fractal metasurface-based dual-polarization converter in the THz regime. Results Phys. 19, 103358 (2020).

    Article  Google Scholar 

  17. Z. Zheng, Y. Zheng, Y. Luo, Z. Yi, J. Zhang, Z. Liu, W. Yang, Y. Yu, X. Wu, and P. Wu, A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection. Phys. Chem. Chem. Phys. 24, 2527 (2022).

    Article  CAS  Google Scholar 

  18. Y. Liu, L. Dong, J. Zheng, M.F. Mohd Sabri, N.A. Majid, and S. Ibrahim, Switchable absorbing, reflecting, and transmitting metasurface by employing vanadium dioxide on the same frequency. Superlattices Microstruct. 162, 107109 (2022).

    Article  CAS  Google Scholar 

  19. X. He, D. Wang, J. Jiang, G. Lu, Y. Yao, Y. Gao, and Y. Yang, Multidimensional manipulation of broadband absorption with dual-controlled terahertz metamaterial absorbers. Diam. Relat. Mater. 125, 108977 (2022).

    Article  CAS  Google Scholar 

  20. Y. Cheng, and J. Wang, Tunable terahertz circular polarization convertor based on graphene metamaterial. Diam. Relat. Mater. 119, 108559 (2021).

    Article  CAS  Google Scholar 

  21. M. Wang, Y. Cheng, and L. Wu, Ultra-broadband high-efficiency circular polarization conversion and terahertz wavefront manipulation based on an all-metallic reflective metasurface. Appl. Opt. 61, 4833 (2022).

    Article  Google Scholar 

  22. D. Yang, Y. Cheng, F. Chen, H. Luo, and L. Wu, Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diam. Relat. Mater. 131, 109605 (2023).

    Article  CAS  Google Scholar 

  23. A.M. Morsy, M.T. Barako, V. Jankovic, V.D. Wheeler, M.W. Knight, G.T. Papadakis, L.A. Sweatlock, P.W.C. Hon, and M.L. Povinelli, Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Sci. Rep. 10, 13964 (2020).

    Article  CAS  Google Scholar 

  24. M.C. Larciprete, M. Centini, S. Paoloni, I. Fratoddi, S.A. Dereshgi, K. Tang, J. Wu, and K. Aydin, Adaptive tuning of infrared emission using VO2 thin films. Sci. Rep. 10, 11544 (2020).

    Article  CAS  Google Scholar 

  25. Q.Y. Wen, H.W. Zhang, Q.H. Yang, Y.S. Xie, K. Chen, and Y.L. Liu, Terahertz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 97, 021111 (2010).

    Article  Google Scholar 

  26. Z. Wang, Y. Ma, M. Li, L. Wu, T. Guo, Y. Zheng, Q. Chen, and Y. Fu, A thermal-switchable metamaterial absorber based on the phase-change material of vanadium dioxide. Nanomater. (Basel) 12, 3000 (2022).

    Article  CAS  Google Scholar 

  27. J. Li, J. Li, Y. Zhang, J. Li, Y. Yang, H. Zhao, C. Zheng, J. Li, J. Huang, F. Li, T. Tang, and J. Yao, All-optical switchable terahertz spin-photonic devices based on vanadium dioxide integrated metasurfaces. Opt. Commun. 460, 124986 (2020).

    Article  CAS  Google Scholar 

  28. F. Lv, Z. Xiao, X. Lu, M. Chen, and Y. Zhou, Polarization conversion and absorption of multifunctional all-dielectric metamaterial based on vanadium dioxide. Plasmonics 16, 567 (2020).

    Article  Google Scholar 

  29. F. Lv, L. Wang, Z. Xiao, M. Chen, Z. Cui, and Q. Xu, Asymmetric transmission polarization conversion of chiral metamaterials with controllable switches based on VO2. Opt. Mater. 114, 110667 (2021).

    Article  CAS  Google Scholar 

  30. Y. Ren, and B. Tang, Switchable multi-functional VO2-integrated metamaterial devices in the Terahertz region. J. Lightwave Technol. 39, 5864 (2021).

    Article  CAS  Google Scholar 

  31. J. Li, Y. Zhang, J. Li, X. Yan, L. Liang, Z. Zhang, J. Huang, J. Li, Y. Yang, and J. Yao, Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–Berry coding metasurfaces. Nanoscale 11, 5746 (2019).

    Article  CAS  Google Scholar 

  32. F. Li, T. Tang, J. Li, L. Luo, C. Li, J. Shen, and J. Yao, Chiral coding metasurfaces with integrated vanadium dioxide for thermo-optic modulation of terahertz waves. J. Alloy. Compd. 826, 154174 (2020).

    Article  CAS  Google Scholar 

  33. H.X. Xu, S. Sun, S. Tang, S. Ma, Q. He, G.M. Wang, T. Cai, H.P. Li, and L. Zhou, Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci. Rep. 6, 27503 (2016).

    Article  CAS  Google Scholar 

  34. Y. Zhang, Y. Feng, and J. Zhao, Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave. Carbon 163, 244 (2020).

    Article  CAS  Google Scholar 

  35. X. Wang, Z. Xiao, X. Miao, X. Jiang, and A. Li, Graphene-metal hybrid metamaterial for a tunable broadband terahertz linear-polarization conversion switch and linear-to-circular polarization. J. Electron. Mater. 1, 3058 (2023).

    Article  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant No. 61275070) and Natural Science Foundation of Shanghai (Grant No. 15ZR1415900).

Author information

Authors and Affiliations

Authors

Contributions

XW: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review Editing. XW: Conceptualization, Methodology, Software, Writing - Original Draft, Writing - Review Editing. ZX: Conceptualization, Validation, Writing - Review & Editing, Supervision. XM: Software, Data Curation. Writing - Review Editing. TZ: Software, Investigation, Supervision.

Corresponding author

Correspondence to Zhongyin Xiao.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Consent to Participate

Written informed consent for participate was obtained from all participants.

Ethics Approval

We declare that this article is original, has not been published before, and is not currently considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, X., Xiao, Z. et al. Theoretical Study of Helicity Control of Circular Polarization Waves in Terahertz Region Based on Vanadium Dioxide Metamaterials. J. Electron. Mater. 52, 6277–6286 (2023). https://doi.org/10.1007/s11664-023-10572-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10572-x

Keywords

Navigation