Skip to main content
Log in

Characterization of Mössbauer and Superparamagnetic Properties in Maghemite Nanoparticles Synthesized by a Sol–Gel Method

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Maghemite (γ-Fe2O3) nanoparticles were synthesized via a sol–gel process with (Fe(NO3)3 9H2O) as a starting material and annealed in an Ar/H2 (5%) balanced gas atmosphere. According to x-ray analysis, the average particle size was found to be 7.0 nm with a narrow size distribution for samples annealed at 150°C. Transmission electron microscopy (TEM) analysis also confirmed a particle size of 7.2 nm. The structural and magnetic properties were analyzed using x-ray diffraction (XRD), vibrating-sample magnetometry (VSM), and Mössbauer spectroscopy, and were found to have a spinel structure and exhibit superparamagnetic behavior. TEM was carried out to monitor the size and morphology of the particles. The hyperfine fields at 4.2 K for the A and B sites were determined to be 509 kOe and 476 kOe, respectively. The isomer shift values were δB = 0.36 mm/s and δA = 0.32 mm/s, which both correspond to Fe3+. Since magnetite (Fe3O4) has Fe2+ and maghemite has only Fe3+, it can be seen from the Mössbauer result that the powder heat-treated at 150°C is maghemite. The blocking temperature (TB) of the superparamagnetic maghemite nanoparticles was approximately 167 ± 5 K. The magnetic anisotropy constant was calculated to be 1.4 × 106 ergs/cm3. The coercivity value at 0 K was calculated as HCO = 174.5 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Kandasamy, A. Sudame, T. Luthra, K. Saini, and D. Maity, Functionalized hydrophilic superparamagnetic iron oxide nanoparticles for magnetic fluid hyperthermia application in liver cancer treatment. ACS Omega 3, 3991 (2018).

    Article  Google Scholar 

  2. A.S. Agnihotri, A. Varghese, and M. Nidhin, Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021).

    Article  Google Scholar 

  3. J. Palzer, L. Eckstein, I. Slabu, O. Reisen, U.P. Neumann, and A.A. Roeth, Iron oxide nanoparticle-based hyperthermia as a treatment option in various gastrointestinal malignancies. Nanomaterials 11, 3013 (2021).

    Article  CAS  Google Scholar 

  4. J.D. Rybka, Radiosensitizing properties of magnetic hyperthermia mediated by superparamagnetic iron oxide nanoparticles (SPIONs) on human cutaneous melanoma cell lines. Reports Pract. Oncol. Radiother. 24, 152 (2019).

    Article  Google Scholar 

  5. F. Caldera, R. Nistico, G. Magnacca, A. Matencio, Y.K. Monfared, and F. Trotta, Magnetic composites of dextrin-based carbonate nanosponges and iron oxide nanoparticles with potential application in targeted drug delivery. Nanomaterials 12, 754 (2022).

    Article  CAS  Google Scholar 

  6. P. Hugounenq, M. Levy, D. Alloyeau, L. Lartigue, E. Dubois, V. Cabuil, C. Ricolleau, S. Roux, C. Wilhelm, F. Gazeau, and R. Bazzsi, Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J. Phys. Chem. C 116, 15702 (2012).

    Article  CAS  Google Scholar 

  7. S. Palanisamy and Y.M. Wang, Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans. 48, 9490 (2019).

    Article  CAS  Google Scholar 

  8. M. Bustamante-Torres, D. Romero-Fierro, J. Estrella-Nunez, B. Arcentales-Vera, E. Chichande-Proano, and E. Bucio, Polymeric composite of magnetite iron oxide nanoparticles and their application in biomedicine: a review. Polymers 14, 752 (2022).

    Article  CAS  Google Scholar 

  9. M. Muzzio, J. Li, Z. Yin, L.M. Delahunty, J. Xie, and S. Sun, Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale 11, 18946 (2019).

    Article  CAS  Google Scholar 

  10. Q.A. Pankhurst, N.T.K. Thanh, S.J. Jones, and J. Dobson, Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 42, 224001 (2009).

    Article  Google Scholar 

  11. X. Lin, J. Song, X. Chen, and H. Yang, Ultrasound-activated sensitizers and applications. Angew. Chem. Int. Ed. 59, 14212 (2020).

    Article  CAS  Google Scholar 

  12. M. Parashar, V.K. Shukla, and R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron 31, 3729 (2020).

    Article  CAS  Google Scholar 

  13. M. Benamara, N. Zahmouli, S.S. Teixeira, M.P.F. Graca, L.E. Mir, and M.A. Valente, Electrical and magnetic studies of maghemite (γ-Fe2O3) prepared by the Sol–Gel route. J. Electron. Mater. 51, 2698 (2022).

    Article  CAS  Google Scholar 

  14. M. Fantauzzi, A. Pacella, D. Atzei, A. Gianfagna, G.B. Andreozzi, and A. Rossi, Combined use of X-ray photoelectron and Mössbauer spectroscopic techniques in the analytical characterization of iron oxidation state in amphibole asbestos. Anal. Bioanal. Chem. 396, 2889 (2010).

    Article  CAS  Google Scholar 

  15. F. Grandjean and G.J. Long, Best practices and protocols in Mössbauer spectroscopy. Chem. Mater. 33, 3878 (2021).

    Article  CAS  Google Scholar 

  16. E. Abdelhamid, S.S. Laha, A. Dixit, G.A. Nazri, O.D. Jayakumar, and B. Nadgorny, Exchange bias enhancement and magnetic proximity effect in FeVO4–Fe3O4 nanoparticles. J. Electron. Mater. 48, 3297 (2019).

    Article  CAS  Google Scholar 

  17. H.M.N.U.H.K. Asghar, M.K. Nawaz, R. Hussain, and Z.A. Gilani, Synthesis and characterization of praseodymium doped nickel zinc ferrites using microemulsion method. J. Mater. Phys. Sci. 1, 98 (2020).

    Google Scholar 

  18. M. Porru, M.D.P. Morales, A. Gallo-Cordova, A. Espinosa, M. Moros, F. Brero, M. Mariani, A. Lascialfari, and J.G. Ovejero, Tailoring the magnetic and structural properties of manganese/zinc doped iron oxide nanoparticles through microwaves-assisted polyol synthesis. Nanomaterials 12, 3304 (2022).

    Article  CAS  Google Scholar 

  19. S. Yoon, Preparation and physical characterizations of superparamagnetic maghemite nanoparticles. J. Magn. 19, 323 (2014).

    Article  Google Scholar 

  20. T. Saragi, B. Permana, A. Therigan, H.D. Sinaga, T. Maulana, and R. Risdiana, Study of magnetic properties and relaxation time of nanoparticle Fe3O4–SiO2. Materials 15, 1573 (2022).

    Article  CAS  Google Scholar 

  21. C. Caizer, Optimization study on specific loss power in superparamagnetic hyperthermia with magnetite nanoparticles for high efficiency in alternative cancer therapy. Nanomaterials 11, 40 (2021).

    Article  CAS  Google Scholar 

  22. F.C. Fonseca, G.F. Goya, R.F. Jardim, R. Muccillo, N.L.V. Carreno, E. Longo, and R.R. Leite, Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2. Phys. Rev. B 66, 104406 (2002).

    Article  Google Scholar 

  23. T. Longo, S. Kim, A.K. Srivastava, L. Hurley, K. Ji, A.J. Viescas, N. Flint, A.C. Foucher, D. Yates, E.A. Stach, F. Bou-Abdallah, and G.G. Papaefthymiou, Micromagnetic and morphological characterization of heteropolymer human ferritin cores. Nanoscale Adv. 5, 208 (2023).

    Article  CAS  Google Scholar 

  24. S.W. Lee and C.S. Kim, Superparamagnetic properties of nanoparticles Ni0.9Zn0.1Fe2O4 for biomedical applications. J. Magn. 10, 5 (2005).

    Article  Google Scholar 

  25. H.E. Ghandoor, H.M. Zidan, M.H. Khalil, and M.I.M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734 (2012).

    Article  Google Scholar 

  26. E.F. Ferrari, F.C.S.D. Silva, and M. Knobel, Influence of the distribution of magnetic moments on the magnetization and magnetoresistance in granular alloys. Phys. Rev. B 56, 6086 (1997).

    Article  CAS  Google Scholar 

  27. M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T.O. Ely, C. Amiens, and B. Chaudret, Surface effects on the magnetic properties of ultrafine cobalt particles. Phys. Rev. B 57, 2925 (1998).

    Article  CAS  Google Scholar 

  28. J.R. Jeong, S.J. Lee, J.D. Kim, and S.C. Shin, Magnetic properties of Fe3O4 nanoparticles encapsulated with poly(D, L Lactide-Co-Glycolide). IEEE Trans. Magn. 40, 3015 (2004).

    Article  CAS  Google Scholar 

  29. K. Maaz, A. Muataz, S.K. Hasanain, and M.F. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles. J. Magn. Magn. Mater. 322, 2199 (2010).

    Article  CAS  Google Scholar 

  30. M.E. Sadat, S.L. Budko, R.C. Ewing, H. Xu, G.M. Pauletti, D.B. Mast, and D. Shi, Effect of dipole interactions on blocking temperature and relaxation dynamics of superparamagnetic iron-oxide (Fe3O4) nanoparticle systems. Materials 16, 496 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like thank Prof. Chul Sung Kim in Kookmin University for helping in Mössbauer measurements. This paper is written with support for research funding from aSSIST University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Yong An.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, S.Y. Characterization of Mössbauer and Superparamagnetic Properties in Maghemite Nanoparticles Synthesized by a Sol–Gel Method. J. Electron. Mater. 52, 6308–6315 (2023). https://doi.org/10.1007/s11664-023-10569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10569-6

Keywords

Navigation