Skip to main content
Log in

High-Performance Porous Carbon Electrode Materials Derived from Air Pre-oxidation of Anthracite Supplemented with KOH Activation for Supercapacitors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, we report the development of a porous activated carbon electrode (PACE) material for supercapacitors, derived from anthracite carbonized at high temperatures in an argon atmosphere. Our approach involves a facile air pre-oxidation process, followed by KOH activation, to significantly enhance the material's specific surface area and porosity. The pre-oxidation treatment effectively increased the specific surface area to 1555.1 m2 g−1, resulting in a large number of micropores and mesopores. Moreover, this treatment effectively modulated the structure of small-to-medium-sized pores (2–4 nm) in the PACE samples, ensuring sufficient charge storage capacity and rapid electrolyte ion transport. The optimal sample, C-Pre-2h, demonstrated remarkable cycling stability, with 100% capacitance retention after 10,000 cycles, and a high specific capacitance of 272.1 F g−1 at 1 A g−1. A symmetric supercapacitor based on C-Pre-2h exhibited a substantial energy density of 10.11 Wh kg−1 at 256 W kg−1, alongside a high power density of 25,641 W kg−1 at 3.16 Wh kg−1. This work presents a cost-effective porous carbon material with exceptional cycling stability and superior performance for supercapacitor applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. P. Sharma and V. Kumar, Current technology of supercapacitors: a review. J. Electron. Mater. 49, 3520 (2020).

    Article  CAS  Google Scholar 

  2. Y.W. Wang, Y. Zeng, J.B. Zhu, C. Yang, H.A. Huang, X.D. Chen, R.R. Wang, P. Yan, S.H. Wei, M.X. Liu, and D.Z. Zhu, From dual-aerogels with semi-interpenetrating polymer network structure to hierarchical porous carbons for advanced supercapacitor electrodes. Colloids Surf. A 649, 129356 (2022).

    Article  CAS  Google Scholar 

  3. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q.L. Wei, J. Lau, and B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5 (2020).

    Article  Google Scholar 

  4. A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123 (2019).

    Article  CAS  Google Scholar 

  5. Poonam, K. Sharma, A. Arora, and S.K. Tripathi, Review of supercapacitors: materials and devices. J. Energy Storage 21, 801 (2019).

    Article  Google Scholar 

  6. Y.L. Shao, M.F. El-Kady, J.Y. Sun, Y.G. Li, Q.H. Zhang, M.F. Zhu, H.Z. Wang, B. Dunn, and R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233 (2018).

    Article  CAS  Google Scholar 

  7. V.D. Nithya, A review on holey graphene electrode for supercapacitor. J. Energy Storage 44, 103380 (2021).

    Article  Google Scholar 

  8. M. Fikry, M. Abbas, A. Sayed, A. Nouh, A. Ibrahim, and A.S. Mansour, Using a novel graphene/carbon nanotubes composite for enhancement of the supercapacitor electrode capacitance. J. Mater. Sci. Mater. Electron 33, 3914 (2022).

    Article  CAS  Google Scholar 

  9. H.Y. Liu, T. Xu, Q.D. Liang, Q.S. Zhao, D.W. Zhao, and C.L. Si, Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv. Compos. Hybrid Mater. 5, 1168 (2022).

    Article  CAS  Google Scholar 

  10. M. Shi, Y.F. Xin, X.X. Chen, K.Y. Zou, W.T. Jing, J.J. Sun, Y.Z. Chen, and Y.N. Liu, Coal-derived porous activated carbon with ultrahigh specific surface area and excellent electrochemical performance for supercapacitors. J. Alloys Compd. 859, 157856 (2021).

    Article  CAS  Google Scholar 

  11. J. Deng, Z. Peng, Z. Xiao, S. Song, H. Dai, and L.M. Li, Porous doped carbons from anthracite for high-performance supercapacitors. Appl. Sci. Basel 10, 1081 (2020).

    Article  CAS  Google Scholar 

  12. Y. Mao, H.W. Xie, X. Chen, Y. Zhao, J.K. Qu, Q.S. Song, Z.Q. Ning, P.F. Xing, and H.Y. Yin, A combined leaching and electrochemical activation approach to converting coal to capacitive carbon in molten carbonates. J. Cleaner Prod 248, 119218 (2020).

    Article  CAS  Google Scholar 

  13. T. Budinova, E. Ekinci, F. Yardim, A. Grimm, E. Bjornbom, V. Minkova, and M. Goranova, Characterization and application of activated carbon produced by H3PO4 and water vapor activation. Fuel Process. Technol. 87, 899 (2006).

    Article  CAS  Google Scholar 

  14. Y.T. Li, Y.T. Pi, L.M. Lu, S.H. Xu, and T.Z. Ren, Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance. J. Power Sour. 299, 519 (2015).

    Article  CAS  Google Scholar 

  15. M. Olivares-Marin, C. Fernandez-Gonzalez, A. Macias-Garcia, and V. Gomez-Serrano, Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Appl. Surf. Sci. 252, 5967 (2006).

    Article  CAS  Google Scholar 

  16. J. Yuan, X.H. Zhu, L.Q. Lai, R. Wang, and J.L. Zhu, Preparation and electrochemical properties of nanoscale porous carbon electrode materials based on rice plant soot. J. Wood Chem. Technol. 38, 350 (2018).

    Article  CAS  Google Scholar 

  17. Y.S. Yun, S.Y. Cho, J. Shim, B.H. Kim, S.J. Chang, S.J. Baek, Y.S. Huh, Y. Tak, Y.W. Park, S. Park, and H.J. Jin, Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv. Mater. 25, 1993 (2013).

    Article  CAS  Google Scholar 

  18. Y.H. Liu, X. Qu, G.X. Huang, B.L. Xing, Y.F. Fan, C.A.X. Zhang, and Y.J. Cao, Microporous carbon derived from anthracite as supercapacitor electrodes with commercial level mass loading. J. Energy Storage 43, 103200 (2021).

    Article  Google Scholar 

  19. O. Boujibar, F. Ghamouss, A. Ghosh, O. Achak, and T. Chafik, Activated carbon with exceptionally high surface area and tailored nanoporosity obtained from natural anthracite and its use in supercapacitors. J. Power Sour. 436, 226882 (2019).

    Article  CAS  Google Scholar 

  20. W.P. Ma, L.J. Xie, L.Q. Dai, G.H. Sun, J.Z. Chen, F.Y. Su, Y.F. Cao, H. Lei, Q.Q. Kong, and C.M. Chen, Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochim. Acta 266, 420 (2018).

    Article  CAS  Google Scholar 

  21. L.L. Sun, Z.B. Zhao, Y. Sun, X.Z. Wang, X.G. Liu, Y.Z. Yang, and J.S. Qiu, Activated coal-based graphene with hierarchical porous structures for ultra-high energy density supercapacitors. Diamond Relat. Mater. 106, 107827 (2020).

    Article  CAS  Google Scholar 

  22. J. Wu, M.W. Xia, X. Zhang, Y.Q. Chen, F. Sun, X.H. Wang, H.P. Yang, and H.P. Chen, Hierarchical porous carbon derived from wood tar using crab as the template: Performance on supercapacitor. J. Power Sour. 455, 227982 (2020).

    Article  CAS  Google Scholar 

  23. B. Qin, Q. Wang, X.H. Zhang, X.L. Xie, L.E. Jin, and Q. Cao, One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors. Electrochim. Acta 283, 655 (2018).

    Article  CAS  Google Scholar 

  24. J.Q. Shao, F.W. Ma, G. Wu, C.C. Dai, W.D. Geng, S.J. Song, and J.F. Wan, In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 321, 301 (2017).

    Article  CAS  Google Scholar 

  25. P.P. Chang, K. Matsumura, J.Z. Zhang, J. Qi, C.Y. Wang, T. Kinumoto, T. Tsumura, M.M. Chen, and M. Toyoda, 2D porous carbon nanosheets constructed using few-layer graphene sheets by a “medium-up” strategy for ultrahigh power-output EDLCs. J. Mater. Chem. A 6, 10331 (2018).

    Article  CAS  Google Scholar 

  26. P.P. Chang, F. Yang, Q.R. Xie, T.H. Li, and J.S. Dong, 2D porous carbon nanosheet from sulfonated pitch-based graphene quantum dots for high volumetric performance EDLCs. J. Power Sour. 479, 228825 (2020).

    Article  CAS  Google Scholar 

  27. T.T. Guan, J.H. Zhao, G.L. Zhang, J.L. Wang, D.D. Zhang, and K.X. Li, Template-free synthesis of honeycomblike porous carbon rich in specific 2–5 nm mesopores from a pitch-based polymer for a high-performance supercapacitor. ACS Sustain. Chem. Eng. 7, 2116 (2019).

    Article  CAS  Google Scholar 

  28. P. Hao, Z.H. Zhao, J. Tian, H.D. Li, Y.H. Sang, G.W. Yu, H.Q. Cai, H. Liu, C.P. Wong, and A. Umar, Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6, 12120 (2014).

    Article  CAS  Google Scholar 

  29. X.Q. Zhu, S. Yu, K.T. Xu, Y. Zhang, L.M. Zhang, G.B. Lou, Y.T. Wu, E.H. Zhu, H. Chen, Z.H. Shen, B.F. Bao, and S.Y. Fu, Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chem. Eng. Sci. 181, 36 (2018).

    Article  CAS  Google Scholar 

  30. K.Y. Zou, N. Li, X. Dai, W.T. Jing, M. Shi, C.J. Lu, Q. Tan, Y.F. Xin, J.J. Sun, Y.Z. Chen, and Y.N. Liu, Lightweight freestanding CeF3 nanorod/carbon nanotube composite interlayer for lithium-sulfur batteries. Acs Appl. Nano Mater. 3, 5732 (2020).

    Article  CAS  Google Scholar 

  31. J.M. Gonzalez-Dominguez, M. Alexandre-Franco, C. Fernandez-Gonzalez, A. Anson-Casaos, and V. Gomez-Serrano, Activated carbon from cherry stones by chemical activation: Influence of the impregnation method on porous structure. J. Wood Chem. Technol. 37, 148 (2017).

    Article  CAS  Google Scholar 

  32. Q. Wang, J. Yan, Y.B. Wang, T. Wei, M.L. Zhang, X.Y. Jing, and Z.J. Fan, Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67, 119 (2014).

    Article  CAS  Google Scholar 

  33. X.Y. Zhang, S.H. Sun, X.J. Sun, Y.R. Zhao, L. Chen, Y. Yang, W. Lu, and D.B. Li, Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci. Appl. 5, 130 (2016).

    Article  Google Scholar 

  34. Z. Ling, Z.Y. Wang, M.D. Zhang, C. Yu, G. Wang, Y.F. Dong, S.H. Liu, Y.W. Wang, and J.S. Qiu, Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv. Func. Mater. 26, 111 (2016).

    Article  CAS  Google Scholar 

  35. G.Y. Ren, Y.N. Li, Q.S. Chen, Y. Qian, J.G. Zheng, Y. Zhu, and C. Teng, Sepia-derived N, P co-doped porous carbon spheres as oxygen reduction reaction electrocatalyst and supercapacitor. Acs Sustain. Chem. Eng. 6, 16032 (2018).

    Article  CAS  Google Scholar 

  36. D.D. Zhang, C. He, Y.Z. Wang, J.H. Zhao, J.L. Wang, and K.X. Li, Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance. J. Colloid Interface Sci. 540, 439 (2019).

    Article  CAS  Google Scholar 

  37. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, and T.J. Bandosz, Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438 (2009).

    Article  CAS  Google Scholar 

  38. Z. Wang, J.M. Gu, S.H. Li, G.C. Zhang, J.L. Zhong, X.Y. Fan, D.L. Yuan, S.F. Tang, and D.B. Xiao, One-step polyoxometalates-assisted synthesis of manganese dioxide for asymmetric supercapacitors with enhanced cycling lifespan. Acs Sustain. Chem. Eng. 7, 258 (2019).

    Article  Google Scholar 

  39. J. Zhao, H.W. Lai, Z.Y. Lyu, Y.F. Jiang, K. Xie, X.Z. Wang, Q. Wu, L.J. Yang, Z. Jin, Y.W. Ma, J. Liu, and Z. Hu, Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541 (2015).

    Article  CAS  Google Scholar 

  40. D. Carriazo, M.C. Gutierrez, F. Pico, J.M. Rojo, J.L.G. Fierro, M.L. Ferrer, and F. del Monte, Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors. Chemsuschem 5, 1405 (2012).

    Article  CAS  Google Scholar 

  41. T.S. Mathis, N. Kurra, X.H. Wang, D. Pinto, P. Simon, and Y. Gogotsi, Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 9, 1902007 (2019).

    Article  CAS  Google Scholar 

  42. Y. Lu, J.N. Liang, S.F. Deng, Q.M. He, S.Y. Deng, Y.Z. Hu, and D.L. Wang, Hypercrosslinked polymers enabled micropore-dominant N, S Co-Doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy 65, 103993 (2019).

    Article  CAS  Google Scholar 

  43. X.X. Yang, S. Zhao, Z.Z. Zhang, Y. Chi, C.M. Yang, C.T. Wang, Y.Z. Zhen, D.J. Wang, F. Fu, and R.A. Chi, Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor. J. Colloid Interface Sci. 614, 298 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Research and Development Project of Sichuan Province, China (Grant No. 2017GZ0396), Sichuan Science and Technology Program (Grant No. 2022ZYD0016), Guizhou Science and Technology Program (Grant No. [2020]2Y063-2020QT) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Lin, Y., Li, B. et al. High-Performance Porous Carbon Electrode Materials Derived from Air Pre-oxidation of Anthracite Supplemented with KOH Activation for Supercapacitors. J. Electron. Mater. 52, 6172–6181 (2023). https://doi.org/10.1007/s11664-023-10551-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10551-2

Keywords

Navigation