Skip to main content
Log in

Investigation of the Correlation Between the Critical Behavior and the Magnetocaloric Effect of Amorphous Eu80Au20 Alloy

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The critical behavior and its relation to the magnetocaloric effect in the amorphous Eu80Au20 alloy prepared by the melt-quenching technique are studied in detail. At 4.2 K, the magnetic moment is found to be 6.6 µB/Eu2+ ion (at µ0H = 4 T), which is smaller than the theoretical value of 7 µB/Eu2+ ion, indicating a misalignment of moments. The Curie-Weiss temperature (θP) and experimental effective magnetic moment \(\left( {\mu_{{{\text{eff}}}}^{{{\text{exp}}}} } \right)\) are deduced from the Curie-Weiss law. The magnetic transition from the ferromagnetic state to the paramagnetic state was found to be a second-order magnetic phase transition. The critical exponents (CEs) in amorphous Eu80Au20 alloy are explored around its Curie temperature (TC) and are examined using a variety of techniques, including the modified Arrott plot, the Widom scaling relation, critical isotherm analysis, and the Kouvel-Fisher method. The computed values of the CEs agreed with those predicted by the mean-field approach. Based on these results, one may be able to conclude that the ferromagnetic exchange interaction is the long-range type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, and A. Cond, Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112 (2018).

    Article  Google Scholar 

  2. S. El Ouahbi, Magneto-Caloric effect simulated by Landau theory in amorphous Fe28Y52B20 alloy. J. Supercond. Nov. Magn. 35, 2859 (2022).

    Article  Google Scholar 

  3. G. Yao, B. Liu, Q. Wang, W. Cui, and S. Yang, Magnetic transition and magnetocaloric effect of Gd (Ga, X) (X = Al, Si) alloys. J. Electron. Mater. 52, 742 (2023).

    Article  Google Scholar 

  4. A. Elouafi, S. El Ouahbi, S. Ezairi, M. Lassri, A. Tizliouine, and H. Lassri, Near room temperature magnetocaloric effect of Cr1−xRuxO2 (x = 0.000, 0.125, and 0.250) for magnetic refrigeration. Eur. Phys. J. Plus. 138, 22 (2023).

    Article  CAS  Google Scholar 

  5. Y. Zhang, J. Ouyang, X. Wang, Y. Tian, and Z. Ren, Magneto-structural transformations and magnetocaloric effect in the Heusler type Ni48Cu2Mn36Sn14xTix melt-spun ribbons. Mater. Chem. Phys. 290, 126527 (2022).

    Article  CAS  Google Scholar 

  6. H. Yang, X. Huang, Q. Wu, X. Luo, Q. Wang, J. Fang, N. Yu, M. Pan, and H. Ge, Tailored inverse magnetocaloric effect of Pr0.5Sr0.5MnO3 manganite with Eu substitution. Mater. Chem. Phys. 267, 124676 (2021).

    Article  CAS  Google Scholar 

  7. R.R. Gimaev, A.A. Vaulin, A.F. Gubkin, and V.I. Zverev, Peculiarities of magnetic and magnetocaloric properties of Fe-Rh alloys in the range of antiferromagnet–ferromagnet transition. Phys. Met. Metallogr. 121, 823 (2020).

    Article  CAS  Google Scholar 

  8. K.A. Gschneidner and V.K. Pecharsky, Magnetocaloric materials. Ann. Rev. Mater. Sci. 30, 387 (2000).

    Article  CAS  Google Scholar 

  9. F.Z. Rachid, S. El Ouahbi, A. Elouafi, H. Lassri, A. Fathi, and A. Tizliouine, Magnetic structure and magnetocaloric properties of SrGd2O4 prepared by solid-state method. Appl. Phys. A 128, 1129 (2022).

    Article  CAS  Google Scholar 

  10. A. Murtaza, W.L. Zuo, A. Ghani, M. Yaseen, A. Saeed, T. Chang, Z. Dai, C. Zhou, Y. Zhang, S. Yang, X. Song, and Y. Ren, Magnetostructural transition, magnetocaloric effect and critical exponent analysis in Nd(Co0.8Fe0.2)2 alloy. J. Alloys Compd. 895, 162562 (2022).

    Article  CAS  Google Scholar 

  11. J. Dhahri, S. Mnefgui, A.B. Hassine, T. Tahri, M. Oumezzine, and E.K. Hlil, Behavior of the magnetocaloric effect in La0.7Ba0.2Ca0.1Mn1xSnxO3 manganite oxides as promising candidates for magnetic refrigeration. Phys. B Condens. Matter. 537, 93 (2018).

    Article  CAS  Google Scholar 

  12. D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell, Tricritical point and the doping dependence of the order of the ferromagnetic phase transition of La1−xCaxMnO3. Phys. Rev. Lett. 89, 227202 (2002).

    Article  CAS  Google Scholar 

  13. L. Li, Y. Yuan, Y. Qi, Q. Wang, and S. Zhou, Achievement of a table-like magnetocaloric effect in the dual-phase ErZn2/ErZn composite. Mater. Res. Lett. 6, 67 (2018).

    Article  CAS  Google Scholar 

  14. Y. Zhang, K. Han, M. Li, M. Gao, X. Wang, G. Wang, J.Q. Wang, and J. Huo, Design of Co-based amorphous alloys with magnetocaloric effect near room temperature. J. Noncryst. Solids 592, 121763 (2022).

    Article  CAS  Google Scholar 

  15. A. El Hachmi, S. El Ouahbi, B. Manoun, and H. Lassri, Magnetic, magnetocaloric properties and phenomenological model of perovskite type: Sr3Fe2+xMo1−xO9−3x/2 (x = 0.45, 0.60, and 1.00). J. Supercond. Nov. Magn. 35, 1299 (2022).

    Article  CAS  Google Scholar 

  16. G. Alouhmy, R. Moubah, A. Berrada, N. Hassanain, L. Bessais, and H. Lassri, Magnetic and magnetocaloric properties in amorphous and crystalline Tb0.67Au0.33 alloys. J. Magn. Magn. Mater. 443, 374 (2017).

    Article  CAS  Google Scholar 

  17. C. He, M.A. Torija, J. Wu, J.W. Lynn, H. Zheng, J.F. Mitchell, and C. Leighton, Non-griffiths-like clustered phase above the Curie temperature of the doped perovskite cobaltite La1−xSrxCoO3. Phys. Rev. B 76, 014401 (2007).

    Article  Google Scholar 

  18. S. El Ouahbi, A. Charkaoui, R. Moubah, Z. Yamkane, L.H. Omari, S. Derkaoui, M. Sajieddine, E.K. Hlil, and H. Lassri, Magnetic, magnetocaloric properties and phenomenological model in amorphous Fe40Ni38Mo4B18 alloy. Mater. Today 30, 951 (2020).

    Article  Google Scholar 

  19. B. Rodríguez-Crespo, D. Salazar, S. Lanceros-Méndez, and V. Chernenko, Development and magnetocaloric properties of Ni(Co)-Mn-Sn printing ink. J. Alloys Compd. 917, 165521 (2022).

    Article  Google Scholar 

  20. G. Alouhmy, R. Moubah, E.H. Sayouty, and H. Lassri, Comparative studies of magnetic and magnetocaloric properties in amorphous Gd0.67Y0.33 and Gd0.67Zr0.33 films. Solid State Commun. 250, 14 (2017).

    Article  CAS  Google Scholar 

  21. L.M. Moreno-Ramírez, V. Franco, A. Conde, H. Bez Neves, Y. Mudryk, and V.K. Pecharsky, Influence of the starting temperature of calorimetric measurements on the accuracy of determined magnetocaloric effect. J. Magn. Magn. Mater. 457, 64 (2018).

    Article  Google Scholar 

  22. U.D. Remya, K. Arun, S. Swathi, S.R. Athul, A. Dzubinska, M. Reiffers, and R. Nagalakshmi, Multiple magnetic transitions and magnetocaloric effect of Tb4CoIn alloy. J. Rare Earths (2022). https://doi.org/10.1016/j.jre.2022.09.014.

    Article  Google Scholar 

  23. S. El Ouahbi, M. Lassri, M. Sajieddine, and H. Lassri, Tuning the magnetic and magnetocaloric properties and exponent analysis of amorphous FexNi80xB12Si8 alloys with x = 2.4, 8 and 16. Appl. Phys. A 128, 632 (2022).

    Article  CAS  Google Scholar 

  24. A. Oleaga, A. Salazar, and H. Kuwahara, Thermal diffusivity and critical behavior of Nd1−xSrxMnO3. Phys. B Condens. Matter 380, 512 (2006).

    Article  Google Scholar 

  25. S. El Ouahbi, M. Bouhbou, R. Moubah, Z. Yamkane, S. Derkaoui, H. Idrissi, and H. Lassri, Magnetic, magnetocaloric properties, and phenomenological model in amorphous Ni80−xFex(SiB)20 alloys with (x = 0, 2.4, 8, and 16). J. Supercond. Nov. Magn. 32, 2091 (2018).

    Article  Google Scholar 

  26. J. Yang and Y.P. Lee, Critical behavior in Ti-doped manganites LaMn1−xTixO3 (0.05⩽x⩽0.2). Appl. Phys. Lett. 91, 142512 (2007).

    Article  Google Scholar 

  27. S.N. Kaul, Static critical phenomena in ferromagnets with quenched disorder. J. Magn. Magn. Mater. 53, 5 (1985).

    Article  CAS  Google Scholar 

  28. K. Huang, Statistical Mechanics, 2nd ed., (New York: Wiley, 1987).

    Google Scholar 

  29. J. Inoue and M. Shimizu, Volume dependence of the first-order transition temperature for RCo2 compounds. J. Phys. F Met. Phys. 12, 1811 (1982).

    Article  CAS  Google Scholar 

  30. M. Oumezzine and E.K. Hlil, Critical exponent analysis and evidence of long-range ferromagnetic order in lightly Pr-doped nanocrystalline (La1xPrx)0.67Ba0.33MnO3 (x = 0.15 and 0.22) manganites. J. Low. Temp. Phys. 201, 406 (2020).

    Article  CAS  Google Scholar 

  31. S. El Ouahbi, A. Charkaoui, R. Moubah, Z. Yamkane, S. Derkaoui, and H. Lassri, Critical behavior and its correlation with magnetocaloric effect in amorphous FexNi80xB12Si8 alloys with (x = 2.4, 8 and 16). Solid State Commun. 331, 114291 (2021).

    Article  Google Scholar 

  32. H.C. Chauhan, B. Kumar, A. Tiwari, J.K. Tiwari, and S. Ghosh, Different critical exponents on two sides of a transition: observation of crossover from Ising to Heisenberg exchange in Skyrmion Host Cu2OSeO3. Phys. Rev. Lett. 128(1), 015703 (2022).

    Article  CAS  Google Scholar 

  33. L.V. Bau, N.M. An, N.L. Thi, L.T. Giang, T.D. Thanh, P.T. Phong, and S.C. Yu, Critical exponents and magnetocaloric effect in La0.7Sr0.3Mn1−xTixO3 (x = 0 and 0.05) compounds. J. Electron. Mater. 48(3), 1446 (2019).

    Article  CAS  Google Scholar 

  34. A. Elouafi, S. El Ouahbi, S. Ezairi, F. Lmai, A. Tizliouine, and H. Lassri, Structural, magnetic, and magnetocaloric studies of the potassium diphosphate KCrP2O7. J. Supercond. Nov. Magn. 36, 521 (2023).

    Article  CAS  Google Scholar 

  35. S. El Ouahbi, Z. Yamkane, S. Derkaoui, and H. Lassri, Magnetic properties and the critical exponents in terms of the magnetocaloric effect of amorphous Fe40Ni38Mo4B18 alloy. J. Supercond. Nov. Magn. 34, 1253 (2021).

    Article  Google Scholar 

  36. X. Yang, J. Pan, W. Gai, Y. Tao, H. Jia, L. Cao, and Y. Cao, Three-dimensional critical behavior and anisotropic magnetic entropy change in quasi-two-dimensional LaCrSb3. Phys. Rev. B 105(2), 024419 (2022).

    Article  CAS  Google Scholar 

  37. J. Zhao, X. Liu, X. Kan, C. Liu, W. Wang, J. Hu, and M. Shazeda, Investigating the structural, magnetic, magnetocaloric and critical behavior of Mg0.35Zn0.65Fe2O4 ferrite. Ceram. Int. 47(6), 7906 (2021).

    Article  CAS  Google Scholar 

  38. A. Perumal, V. Srinivas, V.V. Rao, and R.A. Dunlap, Quenched disorder and the critical behavior of a partially frustrated system. Phys. Rev. Lett. 91, 137202 (2003).

    Article  CAS  Google Scholar 

  39. A.K. Pramanik and A. Banerjee, Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: a bulk magnetization study. Phys. Rev. B 79, 214426 (2009).

    Article  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. El Ouahbi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassri, M., El Ouahbi, S., Sajieddine, M. et al. Investigation of the Correlation Between the Critical Behavior and the Magnetocaloric Effect of Amorphous Eu80Au20 Alloy. J. Electron. Mater. 52, 6080–6088 (2023). https://doi.org/10.1007/s11664-023-10539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10539-y

Keywords

Navigation