Skip to main content
Log in

Improving HDVIP Performance Using Photonic Crystal Resonances

  • Topical Collection: 2022 U.S. Workshop on Physics and Chemistry of II-VI Materials
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This work reports on the prospect of using photonic crystal resonances to improve the performance of Leonardo DRS’s Hg1−xCdxTe high-density vertically integrated photodiodes. Close examination of Leonardo DRS’s unique photodiode architecture reveals that it is a photonic crystal by its very construction. As a result, by carefully tailoring the lattice parameters, it is possible to take advantage of guided-mode resonances to improve the performance in very thin film arrays. Of particular emphasis in this work is using such resonances to bolster the performance in thin-film arrays with a material cutoff in the longwave infrared. We begin the paper by describing guided-mode resonances and the benefits they afford. We continue by modeling both simplified and realistic high-density vertically integrated photodiodes using the finite-difference time-domain method. We present one structure with a longwave infrared material cutoff that, due to the presence of a guided-mode resonance, leads to near-perfect transmission into the Hg1−xCdxTe, even in the absence of an anti-reflective coating. Additionally, this same structure absorbs nearly 88% of the incident light even though the Hg1−xCdxTe material is only 1.0 µm thick. Following this theoretical study, we fabricated test structures and performed Fourier-transform infrared spectroscopy measurements. The measurements clearly revealed the presence of guided-mode resonances. Moreover, the measurements agree well with our modeling. Further modeling of the same structures suggests nearly 89% of the incident longwave infrared light can theoretically be absorbed near the presence of the guided-mode resonance. Being able to achieve similar quantum efficiencies in thinner longwave infrared materials would be a significant achievement, as the dark current should roughly decrease proportional to the volume of the absorber. Moreover, reducing our longwave infrared material thickness from nearly 6.0 µm to 1.0 µm has the added benefits of increasing material throughput and decreasing chamber downtime for material grown using molecular beam epitaxy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. A. Kinch, Proc. SPIE 4369 (2001)

  2. A.I. D’Souza, M.G. Stapelbroek, L. Dawson, P. Ely, C. Yoneyama, J. Reekstin, M.R. Skokan, M.A. Kinch, P.K. Liao, M.J. Ohlson, P.J. Ronci, T. Teherani, H.D. Shih, and J. Robinson, Proc. SPIE 6206, 62062H (2006).

    Article  Google Scholar 

  3. M.A. Kinch and K. Electron, Mater. 39, 1043 (2010).

    CAS  Google Scholar 

  4. R.L. Strong, M.A. Kinch, and J.M. Armstrong, J. Electron. Mater. 42, 3103 (2013).

    Article  CAS  Google Scholar 

  5. M. A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE, ISBN 9781628412895 (2014).

  6. C. Schaake, R. Strong, M.A. Kinch, F. Harris, L. Robertson, J. Zhao, and F. Aqariden, J. Electron. Mater. 44, 3102 (2015).

    Article  CAS  Google Scholar 

  7. P.D. Anderson, J.D. Beck, W. Sullivan III., C. Schaake, J. McCurdy, M. Skokan, P. Mitra, and X. Sun, J. Electron. Mater. 51, 6803 (2022).

    Article  CAS  Google Scholar 

  8. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton: Princeton University Press, 2008).

    Google Scholar 

  9. P.R. Villeneuve, S. Fan, S.G. Johnson, J.D. Joannopoulos, and I.E.E. Proc, J Optoelectron. 145, 384 (1998).

    Article  CAS  Google Scholar 

  10. M. Boroditsky, R. Vrijen, T.F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, J. Lightwave Technol. 17, 2096 (1999).

    Article  CAS  Google Scholar 

  11. S. Fan and J.D. Joannopoulos, Phys. Rev. B 65, 235112 (2002).

    Article  Google Scholar 

  12. C. Lin, L.J. Martinez, and M.L. Povinelli, J. Vac. Sci. Techol. B 31, 050606 (2013).

    Article  Google Scholar 

  13. P.D. Anderson, C. Lin, and M.L. Povinelli, Appl. Phys. A. 117, 1879 (2014).

    Article  CAS  Google Scholar 

  14. B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics (London: Wiley, 1991).

    Book  Google Scholar 

  15. A. Chutinan and S. John, Phys. Rev. A 78, 023825 (2008).

    Article  Google Scholar 

  16. C. Lin and M.L. Povinelli, Opt. Express 17, 19371 (2009).

    Article  CAS  Google Scholar 

  17. V.E. Ferry, M.A. Verschuuren, M.C. Lare, R.E.I. Schropp, H.A. Atwater, and A. Polman, Nano Lett. 11, 4239 (2011).

    Article  CAS  Google Scholar 

  18. C. Lin, L.J. Martínez, and M.L. Povinelli, Opt. Express 21, A872 (2013).

    Article  Google Scholar 

  19. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M.A. Seyedi, Y.-T. Ling, Y. Cao, M.L. Povinelli, P.D. Dapkus, and C. Zhou, Nano Lett. 14, 3293 (2014).

    Article  CAS  Google Scholar 

  20. M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P.D. Dapkus, and C. Zhou, Nano Lett. 15, 7217 (2015).

    Article  CAS  Google Scholar 

  21. K.K. Choi, J. Sun, E.A. DeCuir, K.A. Oliver, and P. Wijewarnasuriya, Infrared Phys. Technol. 70, 153 (2015).

    Article  CAS  Google Scholar 

  22. P. Mitra, F.C. Case, J.H. McCurdy, S.A. Zaidel, and L.T. Claiborne, Appl. Phys. Lett. 82, 3185 (2003).

    Article  CAS  Google Scholar 

  23. P. Mitra, F.C. Case, and J.H. McCurdy, Proc. SPIE 5074, 726 (2003).

    Article  CAS  Google Scholar 

  24. J. Schuser and E. Belotti, J. Electron. Mater. 43, 2808 (2014).

    Article  Google Scholar 

  25. A.I. D’Souza, E. Robinson, A.C. DeCuir, D. Okerlund, T.J. de Lyon, H. Shariti, M. Roebuk, D. Yap, R.D. Rajavel, N. Dhar, P.S. Wijerwarnasuriya, and C. Grein, J. Electron. Mater. 41, 2671 (2012).

    Article  Google Scholar 

  26. K. Smith, J. Wehner, R. Graham, J. Randolph, A. Ramirez, G. Venzor, K. Olsson, M. Vilela, and E. Smith, Proc. SPIE 8353, 83532R (2012).

    Article  Google Scholar 

  27. K. Sakoda, Optical Properties of Photonic Crystals (Berlin: Springer, 2005).

    Book  Google Scholar 

  28. P. Capper, Properties of Cadmium-Based Compounds, ISBN: 0852968809 (1994)

  29. E.D. Palik, Handbook of Optical Constants, ISBN: 978-0-12-54415-6 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Duke Anderson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, P.D., Wilks, J., Armstrong, J.M. et al. Improving HDVIP Performance Using Photonic Crystal Resonances. J. Electron. Mater. 52, 7031–7037 (2023). https://doi.org/10.1007/s11664-023-10537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10537-0

Keywords

Navigation