Skip to main content

Advertisement

Log in

Machine Learning-Assisted Defect Analysis and Optimization for P-I-N-Structured Perovskite Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A solar cell capacitance simulator (SCAPS-1D) was used to prepare 3611 cell data with different defect densities in the bulk and interface of p-i-n-structured perovskite solar cells. The training was conducted using four machine learning algorithm models. The random forest algorithm had an accuracy and root mean square error of 0.999 and 0.00306, respectively. As per the explanatory Shapley additive explanations (SHAP) analysis, the bulk defects of the perovskite and the hole transfer layer/perovskite and perovskite/electron transfer layer interface defects greatly affected the power conversion efficiency of the solar cells. It was also confirmed that when the perovskite defect density was low, the cell performance was more sensitive to the interface defect densities. Based on the predictive analysis of machine learning, a strategy to improve the solar cell efficiency of the p-i-n structure was presented, and the efficiency was improved from 17.97% to 24.66% in the poly(triarylamine)/perovskite/phenyl-C61-butyric acid methyl ester structure by optimizing the defect density and resistance. It is expected that this methodology will not only help in identifying the factors affecting the efficiency of perovskite solar cells but also in optimizing the structure of solar cells during the manufacturing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. NREL: Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf. Accessed 4 May 2023

  2. X. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing, Z. Huang, Z. Huang, Y. Cui, T. Hu, M. Su, X. Liao, L. Zhang, F. Wang, Y. Song, and Y. Chen, Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 1 (2020).

    Article  Google Scholar 

  3. D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S.G. Ji, F. Zhang, S.R. Pae, M. Kim, S.B. Kang, V. Dravid, J.J. Berry, J.Y. Kim, K. Zhu, D.H. Kim, and B. Shin, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368, 155 (2020).

    Article  CAS  Google Scholar 

  4. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, and J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 1 (2016).

    Article  Google Scholar 

  5. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Gratzel, and J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381 (2021).

    Article  CAS  Google Scholar 

  6. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, and N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 1 (2012).

    Article  Google Scholar 

  7. F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S.H. Jang, J. Zhang, X. Lu, D. Lei, C.S. Lee, Z. Zhu, and A.K.-Y. Jen, Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134 (2020).

    Article  CAS  Google Scholar 

  8. J.Y. Jeng, Y.F. Chiang, M.H. Lee, S.R. Peng, T.F. Guo, P. Chen, and T.C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727 (2013).

    Article  CAS  Google Scholar 

  9. S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda, J.B. Puel, Y. Vaynzof, J.F. Guillemoles, D. Ory, and G. Grancini, Imaging and quantifying non-radiative losses at 23% efficient inverted perovskite solar cells interfaces. Nat. Commun. 13, 1 (2022).

    Article  Google Scholar 

  10. X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang, and L. Han, Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13, 3823 (2020).

    Article  CAS  Google Scholar 

  11. D. Angmo, G. Deluca, A.D. Scully, A.S.R. Chesman, A. Seeber, C. Zuo, D. Vak, U. Bach, and M. Gao, A lab-to-fab study toward roll-to-roll fabrication of reproducible perovskite solar cells under ambient room conditions. Cell Rep. Phys. Sci. 2, 100293 (2021).

    Article  CAS  Google Scholar 

  12. A. Guchhait, G.K. Dalapati, P. Sonar, S. Gopalan, F.B. Suhaimi, T. Das, V.G.V. Dutt, N. Mishra, C. Mahata, A. Kumar, and S. Ramakrishna, p-i-n Structured semitransparent perovskite solar cells with solution-processed electron transport layer. J. Electron. Mater. 50, 5732 (2021).

    Article  CAS  Google Scholar 

  13. D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G.V.D. Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, Mastering the game of Go with deep neural networks and tree search. Nature 529, 484 (2016).

    Article  CAS  Google Scholar 

  14. A. Talapatra, B.P. Uveruaga, C.R. Stanek, and G. Pilania, A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides. Chem. Mater. 33, 845 (2021).

    Article  CAS  Google Scholar 

  15. D. Weichert, P. Link, A. Stoll, S. Ruping, S. Ihlenfeldt, and S. Wrobel, A review of machine learning for the optimization of production processes. J. Adv. Manuf. Technol. 104, 1889 (2019).

    Article  Google Scholar 

  16. T.P. Carvalho, F.A.A.M.N. Soares, R. Vita, R.D.P. Fancisco, J.P. Basto, and S.G.S. Alcala, A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019).

    Article  Google Scholar 

  17. H. Fujiyoshi, T. Hirakawa, and T. Yamashita, Deep learning-based image recognition for autonomous driving. IATSS Res. 43, 244 (2019).

    Article  Google Scholar 

  18. X. Cai, F. Liu, A. Yu, J. Qin, M. Hatamvand, I. Ahmed, J. Luo, Y. Zhang, H. Zhang, and Y. Zhan, Data-driven design of high-performance MASnxPb1xI3 perovskite materials by machine learning and experimental realization. Light Sci. Appl. 11, 234 (2022).

    Article  CAS  Google Scholar 

  19. S.M. Lundberg and S.I. Lee, A unified approach to interpreting model predictions. Adv. Neural. Inf. Process Syst. 31, 4768 (2017).

    Google Scholar 

  20. M. T. Ribeiro, S. Singh, C. Guestrin, "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 1135 (2016).

  21. Q. Xu, Z. Li, M. Liu, and W.J. Yin, Rationalizing perovskite data for machine learning and materials design. J. Phys. Chem. Lett. 9, 6948 (2018).

    Article  CAS  Google Scholar 

  22. Y. Yu, X. Tan, S. Ning, and Y. Wu, Machine learning for understanding compatibility of organic–inorganic hybrid perovskites with post-treatment amines. ACS Energy Lett. 4, 397 (2019).

    Article  CAS  Google Scholar 

  23. N.T.P. Hartono, J. Thapa, A. Tiihonen, F. Oviedo, C. Batali, J.J. Yoo, Z. Liu, R. Li, D.F. Marron, M.G. Bawendi, T. Buonassisi, and S. Sun, How machine learning can help select capping layers to suppress perovskite degradation. Nat. Commun. 11, 1 (2020).

    Google Scholar 

  24. K. Takahashi, L. Takahashi, I. Miyazato, and Y. Tanaka, Searching for hidden perovskite materials for photovoltaic systems by combining data science and first principle calculations. ACS Photon. 5, 771 (2018).

    Article  CAS  Google Scholar 

  25. X. Li, Y. Dan, R. Dong, Z. Cao, C. Niu, Y. Song, S. Li, and J. Hu, Computational screening of new perovskite materials using transfer learning and deep learning. Appl. Sci. 9, 5510 (2019).

    Article  CAS  Google Scholar 

  26. M.S. Islam, M.T. Islam, S. Sarker, H.A. Jame, S.S. Nishat, M.R. Jani, A. Rauf, S. Ahsan, K.M. Shorowordi, H. Efstathiadis, J. Carbonara, and S. Ahmed, Machine learning approach to delineate the impact of material properties on solar cell device Physics. ACS Omega 7, 22263 (2022).

    Article  CAS  Google Scholar 

  27. H.A. Jame, S. Sarker, M.S. Islam, M.T. Islam, A. Rauf, S. Ahsan, S.S. Nishat, M.R. Jani, K.M. Shorowordi, J. Carbonara, and S. Ahmed, Supervised machine learning-aided SCAPS-based quantitative analysis for the discovery of optimum bromine doping in methylammonium tin-based perovskite (MASnI3 x Brx). ACS Appl. Mater. Interfaces 14, 502 (2021).

    Article  Google Scholar 

  28. I.O. Oboh, Y.H. Offor, and N.D. Okon, Artificial neural network modeling for potential performance enhancement of a planar perovskite solar cell with a novel TiO2/SnO2 electron transport bilayer using nonlinear programming. Energy Rep. 8, 973 (2022).

    Article  Google Scholar 

  29. M. Burgelman, P. Nollet, and S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000).

    Article  Google Scholar 

  30. S.Z. Haider, H. Anwar, and M. Wang, A comprehensive device modeling of perovskite solar cell with inorganic copper iodide as hole transport material. Semicond. Sci. Technol. 33, 035001 (2018).

    Article  Google Scholar 

  31. N. Lakhdar and A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt. Mater. 99, 109517 (2020).

    Article  CAS  Google Scholar 

  32. M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin, K. Techato, N. Nuthammachot, T. Chowdhury, and M. Suklueng, Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys. 16, 102839 (2020).

    Article  Google Scholar 

  33. Y.H. Khattak, F. Baig, A. Shuja, L. Atourki, K. Riaz, and B.M. Soucase, Device optimization of PIN structured perovskite solar cells: impact of design variants. ACS Appl. Electron. Mater. 3, 3509 (2021).

    Article  CAS  Google Scholar 

  34. L.K. Ono, S. Liu, and Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59, 6676 (2020).

    Article  CAS  Google Scholar 

  35. P. Refaeilzadeh, L. Tang, and H. Liu, Cross-validation, Encyclopedia of database systems. ed. L. Liu, and M.T. Özsu (Boston: Springer, 2009), p. 532.

    Chapter  Google Scholar 

  36. S. Ray, A quick review of machine learning algorithms. In 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon) IEEE 35 (2019).

  37. L. Breiman, Bagging predictors. Mach. Learn. 24, 123 (1996).

    Article  Google Scholar 

  38. T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, 785 (2016).

  39. S.K. Pal and S. Mitra, Multilayer perceptron, fuzzy sets, classifiaction. IEEE trans. neural netw. 3, 683 (1992).

    Article  CAS  Google Scholar 

  40. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, and S. Gimenez, Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C. 113, 17278 (2009).

    Article  CAS  Google Scholar 

  41. A. Kojima, K. Techima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).

    Article  CAS  Google Scholar 

  42. M.L. Petrus, J. Schlipf, C. Li, T.P. Gujar, N. Giesbrecht, P. Müller-Buschbaum, M. Thelakkat, T. Bein, S. Huttner, and P. Docampo, Capturing the sun: a review of the challenges and perspectives of perovskite solar cells. Adv. Energy Mater. 7, 1700264 (2017).

    Article  Google Scholar 

  43. Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, and J. Huang, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367, 1352 (2020).

    Article  CAS  Google Scholar 

  44. F. Zhang, S. Ye, H. Zhang, F. Zhou, Y. Hao, H. Cai, J. Song, and J. Qu, Comprehensive passivation strategy for achieving inverted perovskite solar cells with efficiency exceeding 23% by trap passivation and ion constraint. Nano Energy 89, 106370 (2021).

    Article  CAS  Google Scholar 

  45. J. Peng, Y. Wu, W. Ye, D.A. Jacobs, H. Shen, X. Fu, Y. Wan, T. Duong, N. Wu, C. Barugkin, H.T. Nguyen, D. Zhong, J. Li, T. Lu, Y. Liu, M.N. Lockrey, K.J. Weber, K.R. Catchpole, and T.P. White, Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ. Sci. 10, 1792 (2017).

    Article  CAS  Google Scholar 

  46. P. Boonmongkolras, S.D.H. Naqvi, D. Kim, S.R. Pae, M.K. Kim, S. Ahn, and B. Shin, Universal passivation strategy for the hole transport layer/perovskite interface via an alkali treatment for high-efficiency perovskite solar cells. Sol. RRL 5, 2000793 (2021).

    Article  CAS  Google Scholar 

  47. V. Adinolfi, M. Yuan, R. Comin, E.S. Thibau, D. Shi, M.I. Saidaminov, P. Kanjanaboos, D. Kopilovic, S. Hoogland, Z.H. Lu, O.M. Bakr, and E.H. Sargent, The in-gap electronic state spectrum of methylammonium lead iodide single-crystal perovskites. Adv. Mater. 28, 3406 (2016).

    Article  CAS  Google Scholar 

  48. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen, Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 1 (2016).

    Article  Google Scholar 

  49. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, and S.I. Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444 (2021).

    Article  CAS  Google Scholar 

  50. P.W. Liang, C.C. Chueh, S.T. Williams, and A.K.Y. Jen, Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells. Adv. Energy Mater. 5, 1402321 (2015).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Industrial Technology (UR-22-0042)

Author information

Authors and Affiliations

Authors

Contributions

SK developed the ML algorithms, wrote the original manuscript, and supervised the experiments. YJ fabricated and evaluated the PSCs. DWH performed the SCAPS simulations using the prepared parameters. CBM supervised all the experiments and simulations and performed an overall review of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Seongtak Kim or Chan Bin Mo.

Ethics declarations

Conflict of interest

The authors declare no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Jeong, Y., Han, DW. et al. Machine Learning-Assisted Defect Analysis and Optimization for P-I-N-Structured Perovskite Solar Cells. J. Electron. Mater. 52, 5861–5871 (2023). https://doi.org/10.1007/s11664-023-10533-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10533-4

Keywords

Navigation