Skip to main content
Log in

Dielectric and Electrochemical Sensing Studies of Li Co-doped LaAlO3:Ce3+Nanopowders

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report the structural, morphological, dielectric, and electrochemical sensing studies of Li co-doped LaAlO3:Ce3+1.5 nanopowders successfully synthesized via a simple combustion technique utilizing sugar as fuel. Powder x-ray diffraction analysis confirmed that the prepared nanopowders have a pure rhombohedral crystal structure. The average particle size of the prepared nanopowders was found using Scherrer’s relationship and the W-H method and was found to be in the range of 40–60 nm. Fourier-transform infrared spectra revealed the strong transmittance peaks at 455 cm−1, 668 cm−1, 832 cm−1, 1044 cm−1, 1389 cm−1, 1592 cm−1, 2432 cm−1, and 3441 cm−1. The formation of nanoparticles was evidenced by scanning electron micrographs. The optical band gap of the prepared nanopowders was estimated. The dielectric and electrical features of the prepared nanopowders were carried out in the frequency range from 10 Hz to 8 MHz at RT utilizing an LCR meter. The prepared nanopowders showed high dielectric constant and low dielectric loss in low- and high-frequency regions, respectively. Using a Cole–Cole plot, the grain boundary contributions in the prepared nanopowders have been explained. Using cyclic voltammetry and chronoamperometry, the electrochemical sensing performance of the Li+ co-doped Ce3+ activated LaAlO3nanostructure was investigated. This demonstrated improved sensing behavior due to the intermediate energy levels formed by the additional dopant, Ce3+ and co-dopant, Li+. The introduction of Li+ ions into the LaAlO3:Ce3+ nanostructures improves the performance of these materials in various applications. The novelty of dielectric and electrochemical sensing studies of Li co-doped LaAlO3:Ce3+1.5 nanopowders indicate an approach to investigate the electrical properties of a new material which finds potential applications in electrochemical sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Kaur, D. Singh, V. Dubey, N.S. Suryanarayana, Y. Parganiha, and P. Jha, Review of the synthesis, characterization, and properties of LaAlO3 phosphors. Res. Chem. Intermed. 40, 2737 (2014).

    Article  CAS  Google Scholar 

  2. S.Y. Cho, I.T. Kim, and K.S. Hong, Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res 14, 114 (1999).

    Article  CAS  Google Scholar 

  3. B. Jancar, D. Suvorov, M. Valant, and G. Drazic, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 91391 (2003).

    Article  Google Scholar 

  4. I. Zvereva, V. Yu Smirnov, V. Gusarov, and J.C. Popova, Complex aluminates RE2SrAl2O7 (RE= La, Nd, Sm–Ho): cation ordering and stability of the double perovskite slab–rocksalt layer P2/RS intergrowth. Solid State Sci. 5, 343 (2003).

    Article  CAS  Google Scholar 

  5. C.-S. Hsu, C.-L. Huang, and K.-H. Chiang, Microwave dielectric properties of B2O3 doped LaAlO3 ceramics at low sintering temperature. J. Mater. Sci. 38, 3495 (2003).

    Article  CAS  Google Scholar 

  6. S. Pratibha, N. Dhananjaya, and S.R. Manohara, LS Reddy Yadav, Effect of Sm3+, Bi3+ ion doping on the photoluminescence and dielectric properties of phytosynthesized LaAlO3 nanoparticles. J. Mater. Sci Mater Electron. 30, 6745 (2019).

    Article  CAS  Google Scholar 

  7. M.T. Sebastian, Dielectric materials for wireless communication (Amsterdam: Elsevier, 2010).

    Google Scholar 

  8. R. Venkatesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, and G. Nagaraju, Study of optical and dielectric properties of alkali metal cation (Li+, Na+, K+) codoped Eu3+ activated gadolinium aluminate nanoparticles. Mater. Res. Express. 6, 095008 (2019).

    Article  CAS  Google Scholar 

  9. S. Pratibha and N. Dhananjaya, Apsar Pasha, Syed Khasim, Improved luminescence and LPG sensing properties of Sm3+-doped lanthanum aluminate thin films. Appl. Nanosci. 10, 1927 (2020).

    Article  CAS  Google Scholar 

  10. R. Lokesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, and K.H. Sudheer Kumar, Reformed solution combustion approach for probing of structural and dielectric properties of Sm3+ doped GdAlO3 nanoparticles. Mater. Res. Express. 6, 105066 (2019).

    Article  CAS  Google Scholar 

  11. L. Dong, X. Yan, K. Cheng, W. Weng, and W. Han, Low-temperature reduction–pyrolysis–catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Adv. 5, 55474 (2015).

    Article  CAS  Google Scholar 

  12. T. Seungwon Kim, Y. Manabe, T. Kumagai, and S. Mizuta, Preparation and crystal structure of BaTiO3 thin film on LaAlO3 substrates by a coating-pyrolysis process. Mater. Lett. 52, 169 (2002). https://doi.org/10.1016/S0167-577X(01)00386-X.

    Article  Google Scholar 

  13. G.F. Sun, X.W. Qi, T. Zhang, X.Y. Zhang, and H. Chen, Preparation and characterization of Bi-doped LaAlO3 via sol-gel process. Adv. Mater. Res. 624, 30 (2013).

    Article  Google Scholar 

  14. C.B. Lux, R.D. Clark, A. Salazar, L.K. Sveum, and M.A. Krebs, Aerosol generation of lanthanum aluminate. J. Am. Ceram. Soc. 76, 2669 (1993).

    Article  CAS  Google Scholar 

  15. M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobatesand coating method using the same to form a capacitor, U.S. Patent 3,330,697, issued July 11, (1967).

  16. S. Pratibha, N. Dhananjaya, C.R. Manjunatha, and A. Narayana, Fast adsorptive removal of direct blue-53 dye on rare-earth doped Lanthanum aluminate nanoparticles: equilibrium and kinetic studies. Mater. Res. Express. 6, 1250i5 (2020).

    Article  Google Scholar 

  17. G. Qin, X. Huang, J. Chen, and Z. He, Synthesis of Sr and Mg double-doped LaAlO3 nanopowders via EDTA-glycine combined process. Powder Technol. 235, 880 (2013).

    Article  CAS  Google Scholar 

  18. V.K. Vijay Singh, N. Rai, M.S. Singh, M. Pathak, V.V. Rathaiah, R.V. Patel, P.K. Singh, and S.J. Dhoble, Visible upconversion in Er 3+ /Yb 3+ co-doped LaAlO 3 phosphors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 171, 229 (2017). https://doi.org/10.1016/j.saa.2016.08.001.

    Article  CAS  Google Scholar 

  19. S. Yashaswini, C. Pratibha, and G. Pandurangappa, Nagaraju, Enhanced photoluminescence and decay studies of Li co-doped LaAlO3: Ce3+ phosphor for display applications. Eur. Phys. J. Plus. 137, 1 (2022).

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction (Boston: Addison-Wesley Publishing, 1956).

    Google Scholar 

  21. G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Actametallurgica 1, 22 (1953).

    CAS  Google Scholar 

  22. S. Pratibha, B. Chethan, Y.T. Ravikiran, N. Dhananjaya, and V. Jagadeesh Angadi, Enhanced humidity sensing performance of Samarium doped Lanthanum Aluminate at room temperature. Sens. Actuator A Phys. 304, 111903 (2020).

    Article  CAS  Google Scholar 

  23. B. Rivas-Murias, J.-F. Fagnard, Ph. Vanderbemden, M. Traianidis, C. Henrist, R. Cloots, and B. Vertruyen, Spray drying: an alternative synthesis method for polycationic oxide compounds. J. Phys. Chem. Solids 72(3), 158–163 (2011). https://doi.org/10.1016/j.jpcs.2010.12.001.

    Article  CAS  Google Scholar 

  24. S. Yashaswini, R. Pratibha, N. Lokesh, and C. Dhananjaya, Pandurangappa, Disaccharide assisted LaAlO3: Ce3+perovskite: structural and optical studies suitable for display devices. Inorg. Chem. Commun. 123, 108342 (2021).

    Article  CAS  Google Scholar 

  25. K. Mondal and J. Manam, Enhancement of photoluminescence in Eu3+ co-activated Ca2MgSi2O7: Dy3+ phosphors for solid state lighting application. J. Mol. Struct. 1125, 503 (2016).

    Article  CAS  Google Scholar 

  26. M.K. Fayek, S.S. Ata-Allah, H.A. Zayed, M. Kaiser, and S.M. Ismail, Effect of Zn substitution on relaxation characteristics and dielectric properties of Cu1−xZnxGa0.5Fe1.5O4 spinel. J. Alloys Compd. 469, 9 (2009).

    Article  CAS  Google Scholar 

  27. S.K. Saji, T. Jeyasingh, R. Vinodkumar, and P.R.S. Wariar, Radhakrishnan, Temperature dependent electrical properties of combustion synthesized GdAlO3perovskite. In AIP Conf. Proc. 1859, 020015 (2017).

    Article  Google Scholar 

  28. G. Dixit, J.P. Singh, R.C. Srivastava, and H.M. Agrawal, Study of 200 MeV Ag15+ ion induced amorphisation in nickel ferrite thin films. Nucl. Inst. Methods Phys. Res. B Nucl. Inst. Methods B 269, 133 (2011).

    Article  CAS  Google Scholar 

  29. S.C. Watawe, B.D. Sarwade, S.S. Bellad, B.D. Sutar, and B.K. Chougule, Microstructure, frequency and temperature-dependent dielectric properties of cobalt-substituted lithium ferrites. J. Magn. Magn. Mater. 214, 55 (2000).

    Article  CAS  Google Scholar 

  30. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121 (1951).

    Article  CAS  Google Scholar 

  31. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics (New Jersey: Wiley, 1976).

    Google Scholar 

  32. U.N. Trivedi, M.C. Chhantbar, K.B. Modi, and H.H. Joshi, Frequency dependent dielectric behaviour of cadmium and chromium co-substituted nickel ferrite. Indian J. Pure Appl. Phys. 43, 688 (2005).

    CAS  Google Scholar 

  33. A.M. Abdeen, O.M. Hemeda, E.E. Assem, and M.M. El-Sehly, Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J. Magn. Magn. Mater. 238, 75 (2002).

    Article  CAS  Google Scholar 

  34. A. Azam, Microwave assisted synthesis and characterization of Co doped Cu ferrite nanoparticles. J. Alloy. Compd. 540, 145–153 (2012).

    Article  CAS  Google Scholar 

  35. K. Verma, A. Kumar, and D. Varshney, Dielectric relaxation behavior of AxCo1−xFe2O4 (A= Zn, Mg) mixed ferrites. J. Alloys Compd. 526, 91 (2012).

    Article  CAS  Google Scholar 

  36. M.S. Samuel, J. Koshy, A. Chandran, and K.C. George, Dielectric behavior and transport properties of ZnO nanorods. Phys. B Condens. Matter. 406, 3023 (2011).

    Article  Google Scholar 

  37. S.A. Ansari, A. Nisar, W.K. BusharaFatma, and A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Mater. Sci. Eng. B 177, 428 (2012).

    Article  CAS  Google Scholar 

  38. N. Sivakumar, A. Narayanasamy, N. Ponpandian, and G. Govindaraj, Grain size effect on the dielectric behavior of nanostructured Ni0.5 Zn0.5 Fe2 O4. J. Appl. Phys. 101, 084116 (2007).

    Article  Google Scholar 

  39. B. Ramesh, S. Ramesh, R. Vijaya Kumar, and M. Lakshmipathi Rao, AC impedance studies on LiFe5−xMnxO8 ferrites. J. Alloys Compd. 513, 289 (2012).

    Article  CAS  Google Scholar 

  40. Y. Marouani, J. Massoudi, M. Noumi, A. Benali, E. Dhahri, P. Sanguino, M.P.F. Graça, M.A. Valente, and B.F.O. Costa, Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC adv. 11, 1531 (2021).

    Article  CAS  Google Scholar 

  41. L. Vasylechko, A. Senyshyn, and U. Bismayer, Perovskite-type aluminates and gallates. Handb. Phys. Chem. Rare Earths 39, 113 (2009).

    Article  CAS  Google Scholar 

  42. B. Jancar, D. Suvorov, M. Valant, and G. Drazic, Characterization of CaTiO3-NdAlO3 dielectric ceramics. J. Eur. Ceram. Soc. 23, 1391 (2003).

    Article  CAS  Google Scholar 

  43. M. Hashim, B.H. Shalendra Kumar, S.E. Koo, E.M. Shirsath, J.S. Mohammed, R.K. Kotnala, H.K. Choi, H. Chung, and R. Kumar, Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J. Alloys Compd. 518, 11 (2012).

    Article  CAS  Google Scholar 

  44. S.B. Jadhav, U.M. Patil, R.N. Bulakhe, I. Insik, C.D. Lokhande, and P.N. Pawaskar, Vertically aligned nanosheets of an electrodeposited lanthanum oxide electrode for non-enzymatic glucose sensing application. J. Electron. Mater. 50, 675 (2021). https://doi.org/10.1007/s11664-020-08605-w.

    Article  CAS  Google Scholar 

  45. K.H. Sudheer Kumar, Yashaswini, H.J. Yashwanth, S. Pratibha, K. Hareesh, and S.R. Manohara, EntadaGigas seeds mediated synthesis of carbon for dielectric and sensing applications. Sens. Int. 3, 100162 (2022).

    Article  Google Scholar 

  46. C.R. Manjunatha, B.M. Nagabhushana, M.S. Raghu, S. Pratibha, N. Dhananjaya, and A. Narayana, Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of Direct Blue 53 dye and fluoride. Mater. Sci. Eng. C. 101, 674 (2019).

    Article  CAS  Google Scholar 

  47. S. Pratibha, N. Dhananjaya, and G.N. Yashaswini, LaAlO3: Dy3+perovskite for white light emitting phosphors suitable for display devices. J. Mater. Sci. Mater. Electron. 33, 4400 (2022).

    Article  CAS  Google Scholar 

  48. C. Yashaswini and S. Pandurangappa, Pratibha, Impact of alkali metal cation (Li+) on luminescence behavior of CaSO4: Ce3+ nanophosphors. Inorg. Chem. Commun. 125, 108466 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Dr. Pratibha.S would like to convey sincere thanks to the Management, Principal, and HOD (Basic sciences), Sri Venkateshwara College of Engineering, Bengaluru Bangalore for the constant support and encouragement. The author Dr. Yashaswini would like to convey sincere thanks to HOD (Physics), Principal and Management, BMSIT&M, Bangalore for extending the facilities to characterize the compound.

Author information

Authors and Affiliations

Authors

Contributions

This work is a collaborative effort between the Department of Physics, Sri Venkateshwara College of Engineering, Bangalore, Department of Physics BMS Institute of Technology & Management, Bangalore, SP Conceptualization, Methodology, Investigation, Writing—Original Draft. Y Investigation, Formal analysis, Validation, Writing—Review & Editing. KH Resources, Supervision, Writing—Review & Editing. SRM Resources. HJY Resources. CRM Review & Editing.

Corresponding authors

Correspondence to S. Pratibha or Yashaswini.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratibha, S., Yashaswini, Hareesh, K. et al. Dielectric and Electrochemical Sensing Studies of Li Co-doped LaAlO3:Ce3+Nanopowders. J. Electron. Mater. 52, 5757–5768 (2023). https://doi.org/10.1007/s11664-023-10529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10529-0

Keywords

Navigation