Skip to main content
Log in

Study of Electronic Synaptic Characteristics in PVA Organic Field-Effect Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the era of artificial intelligence, traditional von Neumann computer architecture cannot overcome the issue of independent information processing and storage due to the separate storage and processing units. Inspired by the neural systems in the human brain, various artificial synaptic devices have been developed for neuromorphic computing to address the bottleneck of the von Neumann system. Organic field-effect transistors (OFETs) are widely employed to imitate artificial synapses due to their advantages of low cost, flexibility, and simple solution manufacturing. Herein, OFETs were fabricated based on a polyvinyl alcohol (PVA) dielectric layer and dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) channel, which exhibited excellent memory characteristics, including a large memory window of 37.39 V and reliable endurance. In addition, we compared this device with previous reports of synaptic transistors based on different device structure types and summarized the window ratio of transistors, which further demonstrated the excellent memory ability of our organic transistors. More critically, the devices were shown to successfully mimic synaptic behavior such as excitatory postsynaptic currents, and long-term potentiation/depression. The realization of our organic synaptic transistors based on a PVA dielectric layer and DNTT thin-film semiconductor offers a feasible strategy for constructing high-performance neuromorphic devices and further promotes the development of organic synaptic transistors in future neuromorphic computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Q. Liu, S. Gao, L. Xu, W. Yue, C. Zhang, H. Kan, Y. Li, and G. Shen, Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341 (2022).

    Article  CAS  Google Scholar 

  2. S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang, S. Jin, Y. Shao, and J. Huang, Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29, 1903700 (2019).

    Article  CAS  Google Scholar 

  3. C. Zhang, S. Wang, X. Zhao, Y. Yang, Y. Tong, M. Zhang, Q. Tang, and Y. Liu, Sub-femtojoule-energy-consumption conformable synaptic transistors based on organic single-crystalline nanoribbons. Adv. Funct. Mater. 31, 2007894 (2021).

    Article  CAS  Google Scholar 

  4. W. Zhang, H. Gao, C. Deng, T. Lv, S. Hu, H. Wu, S. Xue, Y. Tao, L. Deng, and W. Xiong, An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale 13, 11497 (2021).

    Article  CAS  Google Scholar 

  5. J.L. Meng, T.Y. Wang, Z.Y. He, L. Chen, H. Zhu, L. Ji, Q.Q. Sun, S.J. Ding, W.Z. Bao, P. Zhou, and D.W. Zhang, Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horizons 8, 538 (2021).

    Article  CAS  Google Scholar 

  6. L. Xu, H. Xiong, Z. Fu, M. Deng, S. Wang, J. Zhang, L. Shang, K. Jiang, Y. Li, L. Zhu, L. He, Z. Hu, and J. Chu, High conductance margin for efficient neuromorphic computing enabled by stacking nonvolatile van der Waals transistors. Phys. Rev. Appl. 16, 044049 (2021).

    Article  CAS  Google Scholar 

  7. R.P. Ortiz, A. Facchetti, and T.J. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205 (2010).

    Article  CAS  Google Scholar 

  8. S. Lan, J. Zhong, E. Li, Y. Yan, X. Wu, Q. Chen, W. Lin, H. Chen, and T. Guo, High-performance nonvolatile organic photoelectronic transistor memory based on bulk heterojunction structure. ACS Appl. Mater. Interfaces 12, 31716 (2020).

    Article  CAS  Google Scholar 

  9. L. Xiong, Y. Chen, J. Yu, W. Xiong, X. Zhang, and Y. Zheng, Stretchable ferroelectric field-effect-transistor with multi-level storage capacity and photo-modulated resistance. Appl. Phys. Lett. 115, 153107 (2019).

    Article  Google Scholar 

  10. S. Baek, H.H. Yoo, J.H. Ju, P. Sriboriboon, P. Singh, J. Niu, J.H. Park, C. Shin, Y. Kim, and S. Lee, Ferroelectric field-effect-transistor integrated with ferroelectrics heterostructure. Adv. Sci. 9, 2200566 (2022).

    Article  CAS  Google Scholar 

  11. Y. Peng, W. Xiao, G. Zhang, G. Han, Y. Liu, Y. Hao, Synaptic behaviors in ferroelectric-like field-effect transistors with ultrathin amorphous HfO2 film. Nanoscale Res. Lett. 17 (2022).

  12. J. Benas, L. Veeramuthu, Y. Chuang, S. Chuang, F. Liang, C. Cho, W. Lee, Y. Yan, Y. Zhou, and C. Kuo, Eco-friendly collagen-based bio-organic field effect transistor with improved memory characteristics. Org. Electron. 86, 105925 (2020).

    Article  CAS  Google Scholar 

  13. Y. He, J. Sun, C. Qian, L. Kong, J. Jiang, J. Yang, H. Li, and Y. Gao, Solution-processed natural gelatin was used as a gate dielectric for the fabrication of oxide field-effect transistors. Org. Electron. 38, 357 (2016).

    Article  CAS  Google Scholar 

  14. F. Shao, M. Cai, X. Gu, and G. Wu, Starch as ion-based gate dielectric for oxide thin film transistors. Org. Electron. 45, 203 (2017).

    Article  CAS  Google Scholar 

  15. Y. Park, K. Baeg, and C. Kim, Solution-processed nonvolatile organic transistor memory based on semiconductor blends. ACS Appl. Mater. Interfaces 11, 8327 (2019).

    Article  CAS  Google Scholar 

  16. S. Min, and W. Cho, CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2O5 hybrid electric double layer. Sci Rep 10, 15561 (2020).

    Article  CAS  Google Scholar 

  17. L. Kong, J. Sun, C. Qian, Y. Fu, J. Wang, J. Yang, and Y. Gao, Long-term synaptic plasticity simulated in ionic liquid/polymer hybrid electrolyte gated organic transistors. Org. Electron. 47, 126 (2017).

    Article  CAS  Google Scholar 

  18. S. Han, X. Yang, X. Zhuang, J. Yu, and L. Li, Tailoring the dielectric layer structure for enhanced performance of organic field-effect transistors: the use of a sandwiched polar dielectric layer. Materials 9, 545 (2016).

    Article  Google Scholar 

  19. M. Egginger, and R. Schwödiauer, Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy. AIP Adv. 2, 42152 (2012).

    Article  CAS  Google Scholar 

  20. F. Bachtiger, T.R. Congdon, C. Stubbs, M.I. Gibson, and G.C. Sosso, The atomistic details of the ice recrystallisation inhibition activity of PVA. Nat. Commun. 12, 1323 (2021).

    Article  CAS  Google Scholar 

  21. Y. Wang, W. Huang, Z. Zhang, L. Fan, Q. Huang, J. Wang, Y. Zhang, and M. Zhang, Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Nanoscale 13, 11360 (2021).

    Article  CAS  Google Scholar 

  22. Y. Zhao, B. Liu, J. Yang, J. He, and J. Jiang, Polymer-decorated 2D MoS2 synaptic transistors for biological bipolar metaplasticities emulation. Chin. Phys. Lett. 37, 202 (2020).

    Article  Google Scholar 

  23. J. Jiang, J. Guo, X. Wan, Y. Yang, H. Xie, D. Niu, J. Yang, J. He, Y. Gao, and Q. Wan, 2D MoS2 neuromorphic devices for brain-like computational systems. Small 13, 1700933 (2017).

    Article  Google Scholar 

  24. L. Wei, J. Jiang, and Q. Wan, From pain to fear recognition via pavlovian learning in an organic-inorganic hybrid neuromorphic transistor. Adv. Electron. Mater. 8, 2100871 (2022).

    Article  Google Scholar 

  25. Y. Zhao, G. Feng, and J. Jiang, Poly(vinyl alcohol)-gated junctionless Al-Zn-O phototransistor for photonic and electric hybrid neuromorphic computation. Solid-State Electron. 165, 107767 (2020).

    Article  CAS  Google Scholar 

  26. L.Q. Guo, H. Han, L.Q. Zhu, Y.B. Guo, F. Yu, Z.Y. Ren, H. Xiao, Z.Y. Ge, and J.N. Ding, Oxide neuromorphic transistors gated by polyvinyl alcohol solid electrolytes with ultralow power consumption. ACS Appl. Mater. Interfaces 11, 28352 (2019).

    Article  CAS  Google Scholar 

  27. C. Dai, C. Huo, S. Qi, M. Dai, T. Webster, and H. Xiao, Flexible and transparent artificial synapse devices based on thin-film transistors with nanometer thickness. Int. J Nanomed. 15, 8037 (2020).

    Article  CAS  Google Scholar 

  28. C.A. Di, Y. Liu, G. Yu, and D. Zhu, Interface engineering, an effective approach toward high-performance organic field-effect transistors. Accounts Chem. Res. 42, 1573 (2009).

    Article  CAS  Google Scholar 

  29. Q. Li, T. Wang, X. Wang, L. Chen, H. Zhu, X. Wu, Q. Sun, and D.W. Zhang, Flexible organic field-effect transistor arrays for wearable neuromorphic device applications. Nanoscale 12, 23150 (2020).

    Article  CAS  Google Scholar 

  30. G.S. Lee, J. Jeong, M.K. Yang, J.D. Song, Y.T. Lee, and H. Ju, Non-volatile memory behavior of interfacial InOx layer in InAs nano-wire field-effect transistor for neuromorphic application. Appl. Surf. Sci. 541, 148483 (2021).

    Article  CAS  Google Scholar 

  31. Y. Peng, W. Xiao, F. Liu, Y. Liu, G. Han, N. Yang, N. Zhong, C. Duan, C. Liu, Y. Zhou, Z. Feng, H. Dong, and Y. Hao, Non-volatile field-effect transistors enabled by oxygen vacancy-related dipoles for memory and synapse applications. IEEE Trans. Electron Devices 67, 3632 (2020).

    Article  CAS  Google Scholar 

  32. M. Li, L. Guo, G. Ding, K. Zhou, Z. Xiong, S. Han, and Y. Zhou, Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl. Mater. Interfaces 13, 30861 (2021).

    Article  CAS  Google Scholar 

  33. T. Yu, H. Chen, M. Liao, H. Tien, T. Chang, C. Chueh, and W. Lee, Solution-processable anion-doped conjugated polymer for nonvolatile organic transistor memory with synaptic behaviors. ACS Appl. Mater. Interfaces 12, 33968 (2020).

    Article  CAS  Google Scholar 

  34. B. Lyu, Y. Choi, H. Jing, C. Qian, H. Kang, S. Lee, and J.H. Cho, 2D MXene–TiO2 core-shell nanosheets as a data-storage medium in memory devices. Adv. Mater. 32, 1907633 (2020).

    Article  CAS  Google Scholar 

  35. Y. Ren, J.Q. Yang, L. Zhou, J.Y. Mao, S.R. Zhang, Y. Zhou, and S.T. Han, Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 28, 1805599 (2018).

    Article  Google Scholar 

  36. J.Y. Jin, D.J. Yun, N.S. Hoon, P.C. Eon, and J. Jaeyoung, Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories. ACS Nano 12, 7701 (2018).

    Article  Google Scholar 

  37. S. Lei, W. Yu, G. Qian, G. Yu, and L. Yun, Speed up ferroelectric organic transistor memories by using two-dimensional molecular crystalline semiconductors. ACS Appl. Mater. Interfaces 9, 18127 (2017).

    Article  Google Scholar 

  38. P. Balakrishna Pillai and M. M. De Souza, Nanoionics-based three-terminal synaptic device using zinc oxide. ACS Appl. Mater. Interfaces 9, 1609 (2017).

  39. C. Gao, H. Yang, E. Li, Y. Yan, L. He, H. Chen, Z. Lin, and T. Guo, Heterostructured vertical organic transistor for high-performance optoelectronic memory and artificial synapse. ACS Photonics 8, 3094 (2021).

    Article  CAS  Google Scholar 

  40. A. Al-shawi, M. Alias, P. Sayers, and M.F. Mabrook, Improved memory properties of graphene oxide-based organic memory transistors. Micromachines 10, 643 (2019).

    Article  Google Scholar 

  41. G.A. Abbas, Z. Ding, H.E. Assender, J.J. Morrison, S.G. Yeates, E.R. Patchett, and D.M. Taylor, A high-yielding evaporation-based process for organic transistors based on the semiconductor DNTT. Org. Electron. 15, 1998 (2014).

    Article  CAS  Google Scholar 

  42. Y. Yu, Q. Ma, H. Ling, W. Li, and R. Lin, Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 29, 1904602 (2019).

    Article  CAS  Google Scholar 

  43. T. Tsai, J. Chang, T. Wen, and T. Guo, Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv. Funct. Mater. 23, 4206 (2013).

    Article  CAS  Google Scholar 

  44. N.V.V. Subbarao, M. Gedda, P.K. Iyer, and D.K. Goswami, Enhanced environmental stability induced by effective polarization of a polar dielectric layer in a trilayer dielectric system of organic field-effect transistors: a quantitative study. ACS Appl. Mater. Interfaces 7, 1915 (2015).

    Article  CAS  Google Scholar 

  45. E.A. Van Etten, E.S. Ximenes, L.T. Tarasconi, I.T.S. Garcia, M.M.C. Forte, and H. Boudinov, Insulating characteristics of polyvinyl alcohol for integrated electronics. Thin Solid Films 568, 111 (2014).

    Article  Google Scholar 

  46. S. Han, X. Zhuang, Y. Jiang, X. Yang, L. Li, and J. Yu, Poly(vinyl alcohol) as a gas accumulation layer for an organic field-effect transistor ammonia sensor. Sens. Actuators B Chem. 243, 1248 (2017).

    Article  CAS  Google Scholar 

  47. A. Nawaz, and I.A. Hümmelgen, Poly(vinyl alcohol) gate dielectric in organic field-effect transistors. J. Mater. Sci.: Mater. Electron. 30, 5299 (2019).

    CAS  Google Scholar 

  48. A. Dey, A. Singh, D. Das, and P.K. Iyer, High-performance ZnPc thin film-based photosensitive organic field-effect transistors, influence of multilayer dielectric systems and thin film growth structure. ACS Omega 2, 1241 (2017).

    Article  CAS  Google Scholar 

  49. C. Lu, W. Lee, W. Chen, Manipulation of electrical characteristics of non-volatile transistor-type memory devices through the acceptor strength of donor-acceptor conjugated copolymers. J. Mater. Chem. C Mater. Opt. Electron. Devices 4, 5702 (2016).

  50. P. Zhang, Y. Guo, K. Cao, M. Yi, L. Huang, W. Shi, J. Zhu, and W. Huang, An organic field effect transistor memory adopting octadecyltrichlorosilane self-assembled monolayer. J. Phys. D Appl. Phys. 54, 095106 (2021).

    Article  CAS  Google Scholar 

  51. H. Wei, Y. Ni, L. Sun, H. Yu, J. Gong, Y. Du, M. Ma, H. Han, and W. Xu, Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy 81, 105648 (2021).

    Article  CAS  Google Scholar 

  52. H. Wang, M. Yang, Y. Tong, X. Zhao, Q. Tang, and Y. Liu, Manipulating the hysteresis via dielectric in organic field-effect transistors toward synaptic applications. Org. Electron. 73, 159 (2019).

    Article  CAS  Google Scholar 

  53. Z.Q. Wang, H.Y. Xu, X.H. Li, H. Yu, Y.C. Liu, and X.J. Zhu, Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 22, 2759 (2012).

    Article  CAS  Google Scholar 

  54. Q. Lai, L. Zhang, Z. Li, W.F. Stickle, R.S. Williams, and Y. Chen, Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 22, 2448 (2010).

    Article  CAS  Google Scholar 

  55. M. Dai, Y. Hu, C. Huo, T. Webster, and L. Guo, A newly developed transparent and flexible one-transistor memory device using advanced nanomaterials for medical and artificial intelligence applications. Int. J Nanomed. 14, 5691 (2019).

    Article  CAS  Google Scholar 

  56. J.J. Langille, and R.E. Brown, The synaptic theory of memory: a historical survey and reconciliation of recent opposition. Front. Syst. Neurosci. 12, 52 (2018).

    Article  CAS  Google Scholar 

  57. T. Ali, K. Mertens, K. Kuhnel, M. Rudolph, S. Oehler, D. Lehninger, F. Muller, R. Revello, R. Hoffmann, K. Zimmermann, T. Kampfe, M. Czernohorsky, K. Seidel, J. Van Houdt, and L.M. Eng, A FeFET with a novel MFMFIS gate stack, towards energy-efficient and ultrafast NVMs for neuromorphic computing. Nanotechnology 32, 425201 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62204136, 62105176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiting Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, B., Wang, H. et al. Study of Electronic Synaptic Characteristics in PVA Organic Field-Effect Transistors. J. Electron. Mater. 52, 5307–5314 (2023). https://doi.org/10.1007/s11664-023-10508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10508-5

Keywords

Navigation