Skip to main content
Log in

Analysis of InGaAs/InP p-I-n Photodiode Failed by Electrostatic Discharge

  • Topical Collection: 19th Conference on Defects (DRIP XIX)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have evaluated InGaAs/InP PIN (p-I-n) photodiodes failed by electrostatic discharge (ESD) with forward or reverse biasing, using scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), energy dispersive x-ray spectrometry (EDX), Raman spectroscopy, and photoluminescence (PL) imaging. First, localized traces and bumps were observed on the surface of the Au electrode by SEM. Next, by cross-sectional STEM observation, a heavily damaged region including a void was observed in the p+-InP layer and an upper part of the n-InGaAs layer just below the bump on the Au electrode. Cross-sectional EDX mapping indicated that the damaged region consists of a mixture of InP and InGaAs, i.e., InGaAsP quaternary material. In addition, poor crystal quality of the active PIN region was also revealed by Raman spectroscopy and PL imaging. Furthermore, although similar results were obtained for the ESD-failed samples with application of both forward and reverse bias, the magnitude of the ESD damage is larger in the case of forward bias as compared with the case of reverse bias. On the basis of these results, we propose a possible ESD failure mechanism that is associated with significant Joule heating in the p+-InP layer and the upper part of the n-InGaAs layer due to the local concentration of a large current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Voldman, Lightning rods for nanoelectronics. Sci. Am. 287, 90 (2002).

    Article  CAS  Google Scholar 

  2. A. Amerasekera and C. Duvvury, ESD in Silicon Integrated Circuits, 2nd ed., (New York: Wiley, 1995).

    Google Scholar 

  3. M. Sun and Y. Lu, Nonlinearity in ESD robust InGaAs p-i-n photodiode. IEEE Trans. Electron Devices 52, 1508 (2005).

    Article  CAS  Google Scholar 

  4. K. Bock, ESD issues in compound semiconductor high-frequency devices and circuits, in Proceedings of EOS/ESD Symposium (1997), p. 1.

  5. J.-S. Huang and H. Lu, Size effect on ESD threshold and degradation behavior of InP buried heterostructure semiconductor lasers. Open Appl. Phys. J. 2, 5 (2009).

    Article  CAS  Google Scholar 

  6. J.-S. Huang and Y.-H. Jan, ESD polarity effect study of monolithic, integrated DFB-EAM EML for 100/400G optical networks, in Proceedings of CLEO-PR, p. 1–4 (2017).

  7. Y. Twu, L.S. Cheng, S.N.G. Chu, F.R. Nash, K.W. Wang, and P. Parayanthal, Semiconductor laser damage due to human-body-model electrostatic discharge. J. Appl. Phys. 74, 1510 (1993).

    Article  CAS  Google Scholar 

  8. J.-S. Huang, T. Olson, and E. Isip, Human-body-model electrostatic-discharge and electrical-overstress studies of buried-heterostructure semiconductor lasers. IEEE Trans. Device Mater. Reliab. 7, 453 (2007).

    Article  Google Scholar 

  9. F. Magistrali, D. Sala, G. Salmini, M. Vanzi, F. Fantini, M. Giansante, and L. Zazzetti, ESD induced degration mechanisms of InGaAs/InP lasers. Qual. Reliab. Eng. Int. 8, 287 (1992).

    Article  Google Scholar 

  10. T. Kim, T. Kim, S. Kim, and S.-B. Kim, Degradation behavior of 850 nm AlGaAs/GaAs oxide VCSELs suffered from electrostatic discharge. ETRI J. 30, 833 (2008).

    Article  Google Scholar 

  11. H. Ichikawa, S. Matsukawa, K. Hamada, A. Yamaguchi, and T. Nakabayashi, Failure analysis of InP-based edge-emitting buried heterostructure laser diodes degraded by forward-biased electrostatics discharge tests. Jpn. J. Appl. Phys. 48, 052102 (2009).

    Article  Google Scholar 

  12. H. Ichikawa, A. Kumagai, K. Hamada, A. Yamaguchi, and T. Nakabayashi, Analysis of reverse-biased electrostatic-discharge-induced degradation of GaInAsP/InP buried heterostructure laser diode. Jpn. J. Appl. Phys. 48, 022201 (2009).

    Article  Google Scholar 

  13. D. Mathes, J. Guenter, B. Hawkins, B. Hawthorne, and C. Johnson, An atlas of ESD failure signatures in vertical cavity surface emitting lasers. Proc. ISTFA 31, 336 (2005).

    Google Scholar 

  14. M. Vanzi, G. Mura, G. Marcello, and K. Xiao, ESD tests on 850 nm GaAs-based VCSELs. Microelectron. Reliab. 64, 617 (2016).

    Article  CAS  Google Scholar 

  15. C. Helms, I. Aeby, W. Luo, R.W. Herrick, and A. Yuen, Reliability of oxide VCSELs at Emcore. Proc. SPIE 5364, 183 (2004).

    Article  CAS  Google Scholar 

  16. G. Lu, S. Yang, and Y. Huang, Analysis on failure modes and mechanisms of LED. ICRMS 8, 1237 (2009).

    Google Scholar 

  17. C.-L. Hsu, S. Das, Y.-H. Wu, and F.-J. Kao, Spectrally resolved optical beam-induced current imaging of ESD induced defects on VCSELs. OSA Continuum 4, 711 (2021).

    Article  CAS  Google Scholar 

  18. H.C. Neitzert, Optical gain at low bias voltages in electrostatic-discharge-damaged silicon p-i-n photodiodes. Philos. Mag. B 80, 799 (2000).

    Article  CAS  Google Scholar 

  19. H.C. Neitzert, V. Cappa, R. Crovato, Influence of the device geometry and inhomogeneity on the electrostatic discharge sensitivity of InGaAs/InP avalanche photodetectors, in Proceedings of EOS/ESD Symposium, p. 18–26 (1997).

  20. H.C. Neitzert and V. Cappa, and S. Massetti, Electroluminescence imaging for deffect characterization in InP based optoelectronic devices. Proc. ESSCIRC 26, 929 (1996).

    Google Scholar 

  21. H. C. Neitzert, V. Cappa, High temperature and electrostatic discharge sensibility of InGaAs/InP avalanche photodetectors, in Proceedings of IPRM, p. 300 (1997).

  22. M. Sun, K. Xie, and Y. Lu, Robust PIN photodiode with a guard ring protection structure. IEEE Trans. Electron Devices 51(6), 833 (2004).

    Article  CAS  Google Scholar 

  23. J.K. Guenter, J.A. Tatum, R.A. Hawthorne III., R.H. Johnson, D.T. Mathes, and B.M. Hawkins, A plot twist: the continuing story of VCSELs at AOC. Proc. SPIE 5737, 20 (2005).

    Article  Google Scholar 

  24. J. Wallon, G. Terol, B. Bauduin, and P. Devoldère, Sensitivity to electrostatic discharge of “low-cost” 1.3 µm laser diodes: a comparative study. Mater. Sci. Eng. B 28, 314 (1994).

    Article  CAS  Google Scholar 

  25. P. Jacob and G. Nicoletti, Surface electrostatic damage by microprocess robotic machines: diagnosis and reliability, process auditing, and remedies. IEEE Trans. Device Mater. Reliab. 6, 213 (2006).

    Article  Google Scholar 

  26. D.T. Mathes, R. Hull, K. Choquette, K. Geib, A. Allerman, J. Guenter, B. Hawkins, and B. Hawthorne, Nanoscale materials characterization of degradation in VCSELs. Proc. SPIE 4994, 1 (2003).

    Google Scholar 

  27. T. Nakamura and T. Katoda, Effects of optically excited carriers on Raman spectra from InP. J. Appl. Phys. 55, 3064 (1984).

    Article  CAS  Google Scholar 

  28. B. Boudart, B. Prévot, and C. Schwab, Free-carrier concentration in n-doped InP crystals determined by Raman scattering measurements. Appl. Surf. Sci. 50, 295 (1991).

    Article  CAS  Google Scholar 

  29. L. Artús, R. Cuscó, J. Ibáñez, N. Blanco, and G. González-Díaz, Raman scattering by LO phonon-plasmon coupled modes in n-type InP. Phys. Rev. B 60, 5456 (1999).

    Article  Google Scholar 

  30. S. Ernst, A.R. Goñi, K. Syassen, and M. Cardona, Plasmon Raman scattering and photoluminescence of heavily doped n-type InP near the Γ-X crossover. Phys. Rev. B 53, 1287 (1996).

    Article  CAS  Google Scholar 

  31. G. Irmer, M. Wenzel, and J. Monecke, Light scattering by a multicomponent plasma coupled with longitudinal-optical phonons: Raman spectra of p-type GaAs: Zn. Phys. Rev. B 56, 9524 (1997).

    Article  CAS  Google Scholar 

  32. D. Olego and M. Cardona, Raman scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs. Phys. Rev. B 24, 7217 (1981).

    Article  CAS  Google Scholar 

  33. E. Bedel, G. Landa, R. Carles, J.P. Redoulès, and J.B. Renucci, Raman investigation of the InP lattice dynamics. J. Phys. C Solid State Phys. 19, 1471 (1986).

    Article  CAS  Google Scholar 

  34. R. Cuscó, G. Talamàs, L. Artús, J.M. Martin, and G. González-Díaz, Raman-scattering assessment of Si+-implantation damage in InP. J. Appl. Phys. 79, 3927 (1996).

    Article  Google Scholar 

  35. E. Bedel, G. Landa, R. Carles, J.B. Renucci, J.M. Roquais, and P.N. Favennec, Characterization of implantation and annealing of Zn-implanted InP by Raman spectrometry. J. Appl. Phys. 60, 1980 (1986).

    Article  CAS  Google Scholar 

  36. E. Anastassakis and Y.S. Rapitis, Raman and Infrared phonon piezospectroscopy in InP. Phys. Rev. B 38, 7702 (1988).

    Article  CAS  Google Scholar 

  37. K. Böhm and B. Fischer, Photoluminescence at dislocations in GaAs and InP. J. Appl. Phys. 50, 5453 (1979).

    Article  Google Scholar 

  38. P.K. Bhattacharya, M.V. Rao, and M.-J. Tsai, Growth and photoluminescence spectra of high-purity liquid phase epitaxial In0.53Ga0.47As. J. Appl. Phys. 54, 5096 (1983).

    Article  CAS  Google Scholar 

  39. Y.-S. Chen and O.K. Kim, Near-band gap absorption and photoluminescence of In0.53Ga0.47As semiconductor alloy. J. Appl. Phys. 52, 7392 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Ito.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, Y., Yokogawa, R., Ueda, O. et al. Analysis of InGaAs/InP p-I-n Photodiode Failed by Electrostatic Discharge. J. Electron. Mater. 52, 5150–5158 (2023). https://doi.org/10.1007/s11664-023-10502-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10502-x

Keywords

Navigation