Skip to main content
Log in

Thermoluminescence Kinetic Parameters and Radioluminescence of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-Doped Barium Tantalate Phosphors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The thermoluminescence (TL) kinetic parameters and radioluminescence results (RL) of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-doped barium tantalate phosphors have been studied for different concentrations. The concentration quenching occurring at the RL intensity of Pr3+ after 1.5 mol% was associated with a cross-relaxation between 3P0 → 3H4 and 1D2 → 3H4, while the RL emissions of Tb3+ were observed corresponding to transitions of5D4 → 7FJ. The asymmetry ratio of RL is relatively high compared to the PL asymmetry ratio for Sm3+, which may be attributed to the RL mechanism leading to some decrease in the local symmetry of Sm3+ ions. The Ho3+ and Er3+ show the characteristic green and red emissions corresponding to radiative transitions. Also, the spectral properties of the phosphors have been discussed by comparing the RL results, the reported PL results of Pr3+, Sm3+, Ho3+, Er3+ , and the PL results of Tb3+ , which were examined in the study. After being irradiated by x-ray and short-wave UV light (254 nm), TL glow curves for Pr3+, Tb3+, and Er3+ doped phosphors were compared in the range of 50 °C and 400 °C at a heating rate of 2 °C s−1. TL glow peaks for Pr3+, Tb3+, and Er3+ formed at temperatures of 77 °C and 208 °C, 87 °C and 263 °C, and 158 °C and 267 C, respectively. The kinetic data were estimated by applying computerized glow curve deconvolution (CGCD) where TL glow curves of BaTa2O6:RE3+ (RE = Pr, Tb, Er) consist of 5, 6, and 7 estimated glow peaks with figure-of-merit values of 1.06, 1.60, and 1.09, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Xu, X. Zhao, and Y. Zhu, Synthesis of hexagonal BaTa2O6 nanorods and influence of defects on the photocatalytic activity. J. Phys. Chem. B 110, 25825 (2006).

    Article  CAS  Google Scholar 

  2. G.K. Layden, Polymorphism of BaTa2O6. Mater. Res. Bull. 2, 533 (1967).

    Article  CAS  Google Scholar 

  3. T. Vanderah, R. Roth, T. Siegrist, W. Febo, J. Loezos, and W.W. Ng, Subsolidus phase equilibria and crystal chemistry in the system BaO-TiO2-Ta2O5. Solid State Sci. 5, 149 (2003).

    Article  CAS  Google Scholar 

  4. M. İlhan, M.İ Katı, İÇ. Keskin, and L.F. Güleryüz, Evaluation of structural and spectroscopic results of tetragonal tungsten bronze MTa2O6:Eu3+ (M = Sr, Ba, Pb) phosphors and comparison on the basis of Judd–Ofelt parameters. J. Alloys Compd. 901, 163626 (2022).

    Article  Google Scholar 

  5. M. İlhan, İÇ. Keskin, L.F. Güleryüz, and M.İ Katı, A comparison of spectroscopic properties of Dy3+-doped tetragonal tungsten bronze MTa2O6 (M = Sr, Ba, Pb) phosphors based on Judd–Ofelt parameters. J. Mater. Sci. Mater. Electron. 33, 16606 (2022).

    Article  Google Scholar 

  6. M. İlhan, and L.F. Güleryüz, Cathodoluminescence and photoluminescence of BaTa2O6:Sm3+ phosphor depending on the sintering temperature. Chem. Pap. 76, 6963 (2022).

    Article  Google Scholar 

  7. S.C. Navale, V. Samuel, A.B. Gaikwad, and V. Ravi, A co-precipitation technique to prepare BaTa2O6. Ceram. Int. 33, 297 (2007).

    Article  CAS  Google Scholar 

  8. M. İlhan, A. Mergen, and C. Yaman, Mechanochemical synthesis and characterisation of BaTa2O6 ceramic powders. Ceram. Int. 37, 1507 (2011).

    Article  Google Scholar 

  9. M. İlhan, A. Mergen, and C. Yaman, Removal of iron from BaTa2O6 ceramic powder produced by high energy milling. Ceram. Int. 39, 5741 (2013).

    Article  Google Scholar 

  10. G.K. Layden, Dielectric and structure studies of hexagonal BaTa2O6. Mater. Res. Bull. 3, 349 (1968).

    Article  CAS  Google Scholar 

  11. H. Kato, and A. Kudo, New tantalate photocatalysts for water decomposition into H2 and O2. Chem. Phys. Lett. 295, 487 (1998).

    Article  CAS  Google Scholar 

  12. H. Kato, and A. Kudo, Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal. Today 78, 561 (2003).

    Article  CAS  Google Scholar 

  13. M. İlhan, A. Mergen, C. Sarıoğlu, and C. Yaman, Heat capacity measurements on BaTa2O6 and derivation of its thermodynamic functions. J. Therm. Anal. Calorim. 128, 707 (2017).

    Article  Google Scholar 

  14. M. Ilhan, R. Samur, H. Demirer, and F. Mindivan, Photoluminescence and concentration quenching of Pr3+ doped BaTa2O6 phosphor. Metalurgija 54, 407 (2015).

    Google Scholar 

  15. M. İlhan, İÇ. Keskin, Z. Çatalgöl, and R. Samur, NIR photoluminescence and radioluminescence characteristics of Nd3+ doped BaTa2O6 phosphor. Int. J. Appl. Ceram. Technol. 15, 1594 (2018).

    Article  Google Scholar 

  16. M.K. Ekmekçi, M. İlhan, A.S. Başak, and S. Deniz, Structural and luminescence properties of Sm3+ doped TTB-type BaTa2O6 ceramic phosphors. J. Fluoresc. 25, 1757 (2015).

    Article  Google Scholar 

  17. M. İlhan, M.K. Ekmekçi, A. Mergen, and C. Yaman, Synthesis and optical characterization of red-emitting BaTa2O6:Eu3+ phosphors. J. Fluoresc. 26, 1671 (2016).

    Article  Google Scholar 

  18. M. İlhan, M.K. Ekmekçi, A. Mergen, and C. Yaman, Photoluminescence characterization and heat treatment effect on luminescence behavior of BaTa2O6:Dy3+ phosphor. Int. J. Appl. Ceram. Technol. 14, 1134 (2017).

    Article  Google Scholar 

  19. M. İlhan, Synthesis, structure and photoluminescence properties of Ho3+ doped TTB–BaTa2O6. Solid State Sci. 38, 160 (2014).

    Article  Google Scholar 

  20. M. İlhan, Synthesis, structural properties and visible–near infrared photoluminescence of trivalent erbium (Er3+) doped BaTa2O6 phosphor. AKU J. Sci. Eng. 17, 675 (2017).

    Article  Google Scholar 

  21. J. Singh, J. Manam, and F. Singh, Synthesis and thermoluminescence studies of γ-irradiated Dy3+ doped SrGd2O4 phosphor. Mater. Res. Bull. 94, 113 (2017).

    Article  CAS  Google Scholar 

  22. B. Sanyal, M. Goswami, S. Shobha, V. Prakasan, S.P. Chawla, M. Krishnan, and S.K. Ghosh, Synthesis and characterization of Dy3+ doped lithium borate glass for thermoluminescence dosimetry. J. Non Cryst. Solids 475, 184 (2017).

    Article  CAS  Google Scholar 

  23. M. Isik, E. Bulur, and N.M. Gasanly, TL and TSC studies on TlGaSe2 layered single crystals. J. Lumin. 144, 163 (2013).

    Article  CAS  Google Scholar 

  24. V. Pagonis, G. Kitis, and C. Furetta, Numerical and Practical Exercises in Thermoluminescence (New York: Springer, 2006).

    Google Scholar 

  25. İÇ. Keskı̇n, Radioluminescence results, thermoluminescence analysis and kinetic parameters of Y2O3:Ln3+ (Ln: Dy, Nd, Sm) nanophosphors obtained by sol–gel method. Ceram. Int. 48, 20579 (2022).

    Article  Google Scholar 

  26. T. Yanagida, Study of rare-earth-doped scintillators. Opt. Mater. 35, 1987 (2013).

    Article  CAS  Google Scholar 

  27. M. İlhan, Synthesis, structural characterization, and photoluminescence properties of TTB-type PbTa2O6:Eu3+ phosphor. Int. J. Appl. Ceram. Technol. 14, 1144 (2017).

    Article  Google Scholar 

  28. B.D. Cullity, and S.R. Stock, Elements of X-ray Diffraction, 3rd ed., (Hoboken: Prentice Hall, 2001).

    Google Scholar 

  29. I.E. Wachs, Infrared spectroscopy of supported metal oxide catalysts. Colloids Surf. A: Physicochem. Eng. Asp. 105, 143 (1995).

    Article  CAS  Google Scholar 

  30. K.H. Lee, K.W. Chae, C.I. Cheon, and J.S. Kim, Photoluminescence and structural characteristics of double tungstates A (M1–xPrx)W2O8 (A= Li, Cs, M= Al, Sc, La). J. Eur. Ceram. Soc. 30, 243 (2010).

    Article  CAS  Google Scholar 

  31. K.H. Lee, K.W. Chae, C.I. Cheon, and J.S. Kim, Effect of Crystal Structural environment of Pr3+ on photoluminescence characteristics of double tungstates. J. Korean Ceram. Soc. 48, 183 (2011).

    Article  CAS  Google Scholar 

  32. D. Balaji, A. Durairajan, D. Thangaraju, K.K. Rasu, and S.M. Babu, Investigation of structural and luminescent properties of Pr3+ activated CsGd(WO4)2 by sol–gel synthesis. Mater. Sci. Eng. B 178, 762 (2013).

    Article  CAS  Google Scholar 

  33. R. Naccache, F. Vetrone, A. Speghini, M. Bettinelli, and J.A. Capobianco, Cross-relaxation and upconversion processes in Pr3+ singly doped and Pr3+/Yb3+ codoped nanocrystalline Gd3Ga5O12: the sensitizer/activator relationship. J. Phys. Chem. C 112, 7750 (2008).

    Article  CAS  Google Scholar 

  34. F.B. Xiong, F.X. Xu, H.F. Lin, Y.P. Wang, E. Ma, and W.Z. Zhu, Synthesis and luminescent properties of novel thermal-stable orangish-red-emitting LnNbO4:Sm3+ (Ln=La, Y) phosphors. Appl. Phys. A 126, 908 (2020).

    Article  CAS  Google Scholar 

  35. A.K. Vishwakarma, and M. Jayasimhadri, Pure orange color emitting Sm3+ doped BaNb2O6 phosphor for solid-state lighting applications. J. Lumin. 176, 112 (2016).

    Article  CAS  Google Scholar 

  36. A.Y. Madkhli, Ü.H. Kaynar, M.B. Coban, M. Ayvacikli, A. Canimoglu, and N. Can, Characterization, room and low temperature photoluminescence of yttrium aluminium borate activated with Sm3+ ions. Mater. Res. Bull. 161, 112167 (2023).

    Article  CAS  Google Scholar 

  37. J. Hakami, Ü.H. Kaynar, M. Ayvacikli, M.B. Coban, J.G. Guinea, P.D. Townsend, M. Oglakci, and N. Can, Structural and temperature-dependent luminescence of terbium doped YAl3(BO3)4 phosphor synthesized by the combustion method. Ceram. Int. 48, 32256 (2022).

    Article  CAS  Google Scholar 

  38. İÇ. Keskin, M. Türemiş, M.İ Katı, S. Gültekin, Y.T. Arslanlar, A. Çetin, and R. Kibar, Detailed luminescence (RL, PL, CL, TL) behaviors of Tb3+ and Dy3+ doped LiMgPO4 synthesized by sol–gel method. J. Lumin. 225, 117276 (2020).

    Article  CAS  Google Scholar 

  39. C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142 (1992).

    Article  Google Scholar 

  40. M. İlhan, M.K. Ekmekçi, and İÇ. Keskin, Judd-Ofelt parameters and x-ray irradiation results of MNb2O6:Eu3+ (M= Sr, Cd, Ni) phosphors synthesized via a molten salt method. RSC Adv. 11, 10451 (2021).

    Article  Google Scholar 

  41. T. Xie, R. Lei, J. Wang, F. Huang, S. Zhao, B. Li, and S. Xu, Multi-functionalities of photoluminescence, x-ray excited luminescence and optical temperature sensing in Er3+ and Er3+/Yb3+ doped Gd2Zr2O7 phosphors. J. Alloys Compd. 905, 164226 (2022).

    Article  CAS  Google Scholar 

  42. L. Teng, W. Zhang, W. Chen, J. Cao, X. Sun, and H. Guo, Highly efficient luminescence in bulk transparent Sr2GdF7:Tb3+ glass ceramic for potential x-ray detection. Ceram. Int. 46, 10718 (2020).

    Article  CAS  Google Scholar 

  43. Y. Zhou, J. Chen, O.M. Bakr, and O.F. Mohammed, Metal halide perovskites for x-ray imaging scintillators and detectors. ACS Energy Lett. 6, 739 (2021).

    Article  CAS  Google Scholar 

  44. J. Tous, K. Blazek, M. Kucera, M. Nikl, and J.A. Mares, Scintillation efficiency and x-ray imaging with the RE-doped LuAG thin films grown by liquid phase epitaxy. Radiat. Meas. 47, 311 (2012).

    Article  CAS  Google Scholar 

  45. X. Zhang, G. Zhou, J. Zhou, H. Zhou, P. Kong, Z. Yu, and J. Zhan, Energy transfer from Bi3+ to Ho3+ triggers brilliant single green light emission in LaNbTiO6:Ho3+, Bi3+ phosphors. RSC Adv. 4, 13680 (2014).

    Article  CAS  Google Scholar 

  46. H.R. Gonçalves, Y. Messaddeq, A. Chiasera, Y. Jes, M. Ferrari, and S.J.L. Ribeiro, Erbium-activated silica–zirconia planar waveguides prepared by sol–gel route. Thin Solid Films 516, 3094 (2008).

    Article  Google Scholar 

  47. M. Mortier, Between glass and crystal: glass–ceramics, a new way for optical materials. Philos. Mag. 82, 745 (2002).

    CAS  Google Scholar 

  48. V. Dubey, J. Kaur, and S. Agrawal, Effect of europium doping levels on photoluminescence and thermoluminescence of strontium yttrium oxide phosphor. Mater. Sci. Semicond. Process. 31, 27 (2015).

    Article  CAS  Google Scholar 

  49. Y. Gong, Y. Wang, Y. Li, X. Xu, and W. Zeng, Fluorescence and phosphorescence properties of new long-lasting phosphor Ba4(Si3O8)2:Eu2+, Dy3+. Opt. Exp. 19, 4310 (2011).

    Article  CAS  Google Scholar 

  50. S. Kumar, A.K. Gathania, A. Vij, and R. Kumar, Gamma induced thermoluminescence and color centers study of Dy doped LiF micro-cubes. Ceram. Int. 42, 14511 (2016).

    Article  CAS  Google Scholar 

  51. Y. Horowitz, The annealing characteristics of LiF:Mg, Ti. Radiat. Prot. Dosimetry 30, 219 (1990).

    CAS  Google Scholar 

  52. A. Wiatrowska, and E. Zych, Lu2O3:Pr, Hf storage phosphor: compositional and technological issues. Materials 7, 157 (2014).

    Article  Google Scholar 

  53. H.G. Balian, and N.W. Eddy, Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nucl. Instrum. Methods 145, 389 (1977).

    Article  CAS  Google Scholar 

  54. S.K. Misra, and N.W. Eddy, IFOM, a formula for universal assessment of goodness-of-fit of gamma ray spectra. Nucl. Instrum. Methods 166, 537 (1979).

    Article  CAS  Google Scholar 

  55. M. Balarin, Half-width and asymmetry of glow peaks and their consistent analytical representation. J. Therm. Anal. 17, 319 (1979).

    Article  Google Scholar 

  56. R. Chen, V. Pagonis, and J.L. Lawless, Evaluated thermoluminescence trapping parameters—What do they really mean? Radiat. Meas. 91, 21 (2016).

    Article  CAS  Google Scholar 

  57. S. Gültekin, S. Yıldırım, O. Yılmaz, İÇ. Keskin, M.İ Katı, and E. Çelik, Structural and optical properties of SrAl2O4:Eu2+/Dy3+ phosphors synthesized by flame spray pyrolysis technique. J. Lumin. 206, 59 (2019).

    Article  Google Scholar 

Download references

Acknowledgments

We performed the spectroscopic and structural analyzes ourselves.

Funding

No funding supported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlker Çetin Keskin.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

We accept the ethical statement.

Human and animal rights

Our article does not include humans and animals.

Consent to publications

We have consent for the publication and there is no private information.

Data availability

There is no such situation.

Code availability

There is no such situation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, İ.Ç., İlhan, M. Thermoluminescence Kinetic Parameters and Radioluminescence of RE3+ (RE = Pr, Sm, Tb, Ho, Er)-Doped Barium Tantalate Phosphors. J. Electron. Mater. 52, 5614–5630 (2023). https://doi.org/10.1007/s11664-023-10501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10501-y

Keywords

Navigation