Skip to main content
Log in

Tailoring the Back Contact Properties of Cu2ZnSn(S,Se)4 Thin Film with Mo-Foil by Introducing a Transparent CuCrO2 Buffer Layer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Chalcogenide Cu2ZnSn(S,Se)4 (CZTSSe) is a promising absorber material for photovoltaic applications. When CZTSSe thin film is deposited on an Mo substrate, a Mo(S,Se)2 layer easily forms between the CZTSSe and the Mo, which is detrimental to the back contact property of the CZTSSe. This work proposes a useful way to inhibit the formation of Mo(S,Se)2 by sputtering a CuCrO2 layer on a Mo-foil substrate before the deposition of the CZTSSe. The effects of CuCrO2 thickness on the crystalline structures, morphologies, and electrical properties of the fabricated samples were studied. The results showed that the insertion of the CuCrO2 layer prevented the formation of Mo(S,Se)2. As the thickness of the CuCrO2 increased, the thickness of the Mo(S,Se)2 layer decreased. The Mo(S,Se)2 layer was absent from the cross-sectional scanning electron microscopy image when the CuCrO2 thickness exceeded 85 nm. The back contact resistance of CZTSSe decreased monotonously as the CuCrO2 layer thickened due to the reduction in the Mo(S,Se)2 layer thickness. Therefore, by inserting a CuCrO2 layer to separate the CZTSSe and the Mo-foil, the formation of the Mo(S,Se)2 layer between them was effectively suppressed, and the back contact properties of the CZTSSe thin film were significantly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Kaur and M. Kumar, Progress and prospects of CZTSSe/CdS interface engineering to combat high open-circuit voltage deficit of kesterite photovoltaics: a critical review. J. Mater. Chem. A 8, 21547 (2020).

    Article  Google Scholar 

  2. S.N. Khan, S.J. Ge, Y.X. Huang, H. Xu, W.T. Yang, R.J. Hong, Y.H. Mai, E.N. Gu, X.Z. Lin, and G.W. Yang, Highly efficient Cu2ZnSn(S,Se)4 bifacial solar cell via a composition gradient strategy through the molecular ink. Sci. China Mater. 65, 612 (2022).

    Article  CAS  Google Scholar 

  3. A.S. Nazligul, M.Q. Wang, and K.L. Choy, Recent development in earth-abundant kesterite materials and their applications. Sustainability 12, 5138 (2020).

    Article  CAS  Google Scholar 

  4. B. Pani, S. Pillai, and U.P. Singh, Impact of capping during the formation of Cu2ZnSn(S,Se)4 thin films. Mater. Sci. Semicond. Process. 50, 55 (2016).

    Article  CAS  Google Scholar 

  5. D. Pareek, K.R. Balasubramaniam, and P. Sharma, Reaction pathway for synthesis of Cu2ZnSn(S/Se)4 via mechano-chemical route and annealing studies. J. Mater. Sci. Mater. Electron. 28, 1199 (2017).

    Article  CAS  Google Scholar 

  6. Q.Y. Wen, Y. Li, J.J. Yan, J. Wang, and C.W. Wang, Growth of void-free Cu2ZnSn(S,Se)4 thin film by selenization Cu2ZnSnS4 precursor film from ethylene glycol-based solution. Superlattices Microstruct. 85, 331 (2015).

    Article  CAS  Google Scholar 

  7. C. Li, M. Cao, J. Huang, Y. Sun, L.J. Wang, and Y. Shen, Effects of S and Se contents on the physical and photovoltaic properties of Cu2ZnSn(SxSe1−x)4 nanoparticles. J. Alloys Compd. 616, 542 (2014).

    Article  CAS  Google Scholar 

  8. J.L. Wang, J.Z. Zhou, X. Xu, F.Q. Meng, C.X. Xiang, L.C. Lou, K. Yin, B.W. Duan, H.J. Wu, and J.J. Shi, Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells. Adv. Mater. 34, 2202858 (2022).

    Article  CAS  Google Scholar 

  9. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, K. Bothe, D. Hinken, M. Rauer, and X.J. Hao, Solar cell efficiency tables (version 60). Prog. Photovoltaics 30, 687 (2022).

    Article  Google Scholar 

  10. J. Liu, B. Yao, Y.F. Li, Z.H. Ding, T. Wang, J.Y. Zhang, C.K. Wang, X.Y. Yang, and H. Zhao, Comparative study on effect of Mo-Cr bilayer and Mo back electrodes on performance of Cu2ZnSn(S,Se)4 solar cell. Micro Nanostruct. 163, 107139 (2022).

    Article  Google Scholar 

  11. S.W. Shin, K.V. Gurav, C.W. Hong, J. Gwak, H.R. Choi, S.A. Vanalakar, J.H. Yun, J.Y. Lee, J.H. Moon, and J.H. Kim, Phase segregations and thickness of the Mo(S,Se)2 layer in Cu2ZnSn(S, Se)4 solar cells at different sulfurization temperatures. Sol. Energy Mater. Sol. Cells 143, 480 (2015).

    Article  CAS  Google Scholar 

  12. J. Kim, S. Park, S. Ryu, J. Oh, and B. Shin, Improving the open-circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Prog. Photovolt. 25, 308 (2017).

    Article  Google Scholar 

  13. J.J. Li, Y. Zhang, W. Zhao, D. Nam, H. Cheong, L. Wu, Z.Q. Zhou, and Y. Sun, A temporary barrier effect of the alloy layer during selenization: tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells. Adv. Energy Mater. 5, 1402178 (2015).

    Article  Google Scholar 

  14. S.J. Ge, H. Xu, S.N. Khan, W.T. Yang, R.J. Hong, Y.H. Mai, E.N. Gu, X.Z. Lin, and G.W. Yang, A universal and facile method of tailoring the thickness of Mo(Sx, Se1−x)2, contributing to highly efficient flexible Cu2ZnSn(S,Se)4) solar cells. Sol. RRL 5, 2100598 (2021).

    Article  CAS  Google Scholar 

  15. J.J. Li, H.X. Wang, L. Wu, C. Chen, Z.Q. Zhou, F.F. Liu, Y. Sun, J.B. Han, and Y. Zhang, Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Appl. Mater. Interfaces 8, 10283 (2016).

    Article  CAS  Google Scholar 

  16. B. Shin, N.A. Bojarczuk, and S. Guha, On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Appl. Phys. Lett. 102, 091907 (2013).

    Article  Google Scholar 

  17. X.S. Wu, J.X. Xu, and C.N. Zhuang, Influences of selenization temperature on the properties of CZTSSe thin films and CZTSSe/Mo interfaces. J. Mater. Sci. Mater. Electron. 32, 2837 (2021).

    Article  Google Scholar 

  18. X.S. Wu, and J.X. Xu, Effect of pre-annealing of Mo foil substrate on CZTSSe thin films and Mo(S,Se)2 interface layer. Chalcogenide Lett. 19, 599 (2022).

    Article  CAS  Google Scholar 

  19. K. Shi, B. Yao, Y.F. Li, Z.H. Ding, R. Deng, Y.R. Sui, Z.Z. Zhang, H.F. Zhao, and L.G. Zhang, Modification of back electrode with WO3 layer and its effect on Cu2ZnSn(S,Se)4-based solar cells. Superlattices Microstruct. 113, 328 (2018).

    Article  CAS  Google Scholar 

  20. X.H. Zhang, B. Yao, Y.F. Li, Z.H. Ding, H.F. Zhao, L.G. Zhang, and Z.Z. Zhang, Influence of WSe2 buffer layer at back electrode on performance of Cu2ZnSn(S,Se)4 solar cells. Sol. Energy 199, 128 (2020).

    Article  CAS  Google Scholar 

  21. Y. Zeng, Z. Shen, X. Wu, D.X. Wang, Y.L. Wang, Y.L. Sun, L. Wu, and Y. Zhang, Back contact modification of the optoelectronic device with transition metal dichalcogenide VSe2 film drives solar cell efficiency. J. Materiomics 7, 470 (2021).

    Article  Google Scholar 

  22. X.Y. Yang, B. Yao, Z.H. Ding, R. Deng, M. Zhao, and Y.F. Li, Role of zinc tin oxide passivation layer at back electrode interface in improving efficiency of Cu2ZnSn(S,Se)4 solar cells. Micro Nanostruct. 163, 107133 (2022).

    Article  Google Scholar 

  23. B. Xu, X.S. Lu, C.H. Ma, Y.L. Liu, R.J. Qi, R. Huang, Y. Chen, P.X. Yang, J.H. Chu, and L. Sun, MoO2 sacrificial layer for optimizing back contact interface of Cu2ZnSn(S,Se)4 solar cells. IEEE J. Photovolt. 10, 1191 (2020).

    Article  Google Scholar 

  24. J. Kim, J. Jang, M.P. Suryawanshi, M.R. He, J. Heo, D.S. Lee, H.R. Jung, E. Jo, M.G. Gang, and J.H. Kim, Effect of a graphene oxide intermediate layer in Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. A 8, 4920 (2020).

    Article  CAS  Google Scholar 

  25. S. Zhuk, T.K.S. Wong, E. Tyukalova, A. Guchhait, D.H.L. Seng, S. Tripathy, T.I. Wong, M. Sharma, H. Medina, M. Duchamp, L.H. Wong, and G.K. Dalapati, Effect of TaN intermediate layer on the back contact reaction of sputter-deposited Cu poor Cu2ZnSnS4 and Mo. Appl. Surf. Sci. 471, 277 (2019).

    Article  CAS  Google Scholar 

  26. S. Lopez-Marino, M. Placidi, A. Perez-Tomas, J. Llobet, V. Izquierdo-Roca, X. Fontane, A. Fairbrother, M. Espindola-Rodriguez, D. Sylla, A. Perez-Rodriguez, and E. Saucedo, Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J. Mater. Chem. A 1, 8338 (2013).

    Article  CAS  Google Scholar 

  27. Z.M.T.F. Bai, S.C. Chen, S.S. Lin, Q. Shi, Y.B. Lu, S.M. Song, and H. Sun, Review in optoelectronic properties of p-type CuCrO2 transparent conductive films. Surf. Interfaces 22, 100824 (2021).

    Article  CAS  Google Scholar 

  28. C.Y. Chen, S. Sakthinathan, C.L. Yu, C.C. Wang, T. Chiu, and Q.F. Han, Preparation and characterization of delafossite CuCrO2 film on flexible substrate. Ceram. Int. 47, 23234 (2021).

    Article  CAS  Google Scholar 

  29. S.H. Lin, R.H. Yeh, C. Chu, and R.S. Yu, Effects of Mg doping on structural and optoelectronic properties of p-type semiconductor CuCrO2 thin films. Mater. Sci. Semicond. Process. 139, 106346 (2022).

    Article  CAS  Google Scholar 

  30. T.W. Chiu, Y.C. Yang, A.C. Yeh, Y.P. Wang, and Y.W. Feng, Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition. Vacuum 87, 174 (2013).

    Article  CAS  Google Scholar 

  31. M. Asemi and M. Ghanaatshoar, Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram. Int. 42, 6664 (2016).

    Article  CAS  Google Scholar 

  32. J.H. Li, R.H. Yao, C. Xiong, Y.R. Liu, and K.W. Geng, Cu2ZnSn(S,Se)4 thin films preparation by using ammonium polysulfoselenide-based ink. Mater. Lett. 210, 20 (2018).

    Article  CAS  Google Scholar 

  33. Y.P. Lin, T.E. Hsieh, Y.C. Chen, and K.P. Huang, Characteristics of Cu2ZnSn(SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment. Sol. Energy Mater. Sol. Cells 162, 55 (2017).

    Article  CAS  Google Scholar 

  34. J.Y. Zhang, Y.C. Yang, G.N. Cui, H. Alata, Y.M. Wang, and C.J. Zhu, Enhancing electrical properties of Cu2ZnSn(S,Se)4 thin films via trace Co incorporation. Mater. Chem. Phys. 262, 124318 (2021).

    Article  CAS  Google Scholar 

  35. J. Kavalakkatt, X.Z. Lin, K. Kornhuber, P. Kusch, A. Ennaoui, S. Reich, and M.C. Lux-Steiner, Cu2ZnSn(S,Se)4 from CuxSnSy nanoparticle precursors on ZnO nanorod arrays. Thin Solid Films 535, 380 (2013).

    Article  CAS  Google Scholar 

  36. Y. Havryliuk, M.Y. Valakh, V. Dzhagan, O. Greshchuk, V. Yukhymchuk, A. Raevskaya, O. Stroyuk, O. Selyshchev, N. Gaponik, and D.R.T. Zahn, Raman characterization of Cu2ZnSnS4 nanocrystals: phonon confinement effect and formation of CuxS phases. RSC Adv. 8, 30736 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wu, X. Tailoring the Back Contact Properties of Cu2ZnSn(S,Se)4 Thin Film with Mo-Foil by Introducing a Transparent CuCrO2 Buffer Layer. J. Electron. Mater. 52, 5422–5429 (2023). https://doi.org/10.1007/s11664-023-10491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10491-x

Keywords

Navigation