Skip to main content
Log in

Modeling of Electrical Characteristics of Thin-Film Transistors Based P3HT:ZnO Blend: Channel Length Layer Effect

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In the current study, p-type thin-film transistors (TFT) based on poly(3-hexylthiophene) (P3HT) and zinc oxide (ZnO) nanoparticles with channel length L = 2.5 m, 5 m, 10 m, and 20 m were developed and characterized using solution-processed P3HT. Without any surface preparation, spin coating was used to create P3HT:ZnO thin films as an active layer on a SiO2/Si substrate. In order to better understand the relationship between the electrical performance and the channel length, we investigated the effect of varied channel length on the electrical characteristics of these transistors at room temperature in the saturation regime. The fabricated devices showed significant variation in electrical parameters as a function of channel length, including the threshold voltage (Vth), density of trapped charges (Ntrap), subthreshold slope (SS), density of the interface trap (Dit), field-effect saturation mobility (µsat), and current ratio (Ion/Ioff). This paper discusses the Gaussian DOS distribution (GDOS) of the P3HT:ZnO TFTs for various channel layer lengths using an analytical model for organic TFTs (OTFTs) based on the variable-range hopping (VRH) theory. This model appropriately describes the GDOS. Finally, we used a generic drift model to reproduce the output characteristics of TFT-P3HT. The derived theoretical results exhibit excellent agreement with the experimental data. The value of the mobility in the P3HT transistors is lower than that of the P3HT:ZnO blend, confirming the advantage of introducing the ZnO nanoparticles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support this study's findings are available from the corresponding author upon reasonable request.

References

  1. S. Savagatrup, A.D. Printz, D. Rodriquez, and D.J. Lipomi, Best of both worlds: conjugated polymers exhibiting good photovoltaic behavior and high tensile elasticity. Macromolecules 47, 1981 (2014).

    Article  CAS  Google Scholar 

  2. A. Marrocchi, D. Lanari, A. Facchetti, and L. Vaccaro, Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells. Energy Environ. Sci. 5, 8457 (2012).

    Article  CAS  Google Scholar 

  3. S. Holliday, J.E. Donaghey, and I. McCulloch, Advances in charge carrier mobilities of semiconducting polymers used in organic transistors. Chem. Mater. 26, 647 (2014).

    Article  CAS  Google Scholar 

  4. A. Jouili, S. Mansouri, A. Al-Ghamdi, L. El Mir, and F. Yakuphanoglu, Controlling of DOS of TFTs based 6, 13-bis(triisopropylsilylethynyl) pentacene by solar light illumination. Synth. Met. 220, 591 (2016).

    Article  CAS  Google Scholar 

  5. T.P. Kaloni, P.K. Giesbrecht, G. Schreckenbach, and M.S. Freund, Polythiophene: from fundamental perspectives to applications. Chem. Mater. 29, 10248 (2017).

    Article  CAS  Google Scholar 

  6. A. Jouili, S. Mansouri, A. Al-Ghamdi, L. El Mir, W.A. Farooq, and F. Yakuphanoglu, Characterization and modeling of nano-organic thin film phototransistors based on 6, 13(Triisopropylsilylethynyl)-pentacene: photovoltaic effect. J. Electron. Mater. 46, 2221 (2017). https://doi.org/10.1007/s11664-016-5162-5.

    Article  CAS  Google Scholar 

  7. R.C. Sanfelice, L.A. Mercante, A. Pavinatto, N.B. Tomazio, C.R. Mendonça, and D.S. Correa, Hybrid composite material based on polythiophene derivative nanofibers modified with gold nanoparticles for optoelectronics applications. J. Mater. Sci. 52, 1919 (2017).

    Article  CAS  Google Scholar 

  8. A.C. Arias, J.D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo, Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 11, 3 (2010).

    Article  Google Scholar 

  9. B. Lussem, C.M. Keum, D. Kasemann, B. Naab, Z. Bao, and K. Leo, Doped organic transistors. Chem. Rev. 116, 13714 (2016).

    Article  CAS  Google Scholar 

  10. M.S. Hammer, C. Deibel, J. Pflaum, and V. Dyakonov, Effect of doping of zinc oxide on the hole mobility of poly(3-hexylthiophene) in hybrid transistors. Org. Electron. 11, 1569 (2010).

    Article  CAS  Google Scholar 

  11. S.M. Mok, F. Yan, and H.L. Chan, Organic phototransistor based on poly (3-hexylthiophene)/TiO2 nanoparticle composite. Appl. Phys. Lett. 93, 256 (2008).

    Article  Google Scholar 

  12. A. Kumar, R.R. Navan, A. Kushwaha, M. Aslam, and V.R. Rao, Performance enhancement of p-type organic thin film transistors using zinc oxide nanostructures. Int. J. Nanosci. 10, 761 (2011).

    Article  CAS  Google Scholar 

  13. R.R. Navan, B. Panigrahy, M.S. Baghini, D. Bahadur, and V.R. Rao, Mobility enhancement of solution-processed Poly (3-Hexylthiophene) based organic transistor using zinc oxide nanostructures. Compos. Part B: Eng. 43, 1645 (2012).

    Article  CAS  Google Scholar 

  14. T. Xie, G.Z. Xie, H.F. Du, Z.B. Ye, Y.J. Su, and Y.Y. Chen, The mobility improvement of organic thin film transistors by introducing ZnO-nanrods as an active layer. Sci. China Technol. Sci. 59, 714 (2016).

    Article  CAS  Google Scholar 

  15. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. Appl. Phys. 93, 1624 (2003).

    Article  CAS  Google Scholar 

  16. P.F. Carcia, R.S. McLean, M.H. Reilly, and G. Nunes Jr., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82, 1117 (2003).

    Article  CAS  Google Scholar 

  17. F. Yakuphanoglu, and S. Mansouri, Photosensitivity n-channel ZnO phototransistor for optoelectronic applications: Modeling of ZnO TFT. Microelectron. Reliab. 51, 2200 (2011).

    Article  CAS  Google Scholar 

  18. J. Nishii, F.M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, and M. Kawasaki, High mobility thin film transistors with transparent ZnO channels. J. Appl. Phys. 42, L347 (2003).

    Article  CAS  Google Scholar 

  19. P.F. Carcia, R.S. McLean, M.H. Reilly, M.K. Crawford, E.N. Blanchard, A.Z. Kattamis, and S. Wagner, A comparison of zinc oxide thin-film transistors on silicon oxide and silicon nitride gate dielectrics. J. Appl. Phys. 102, 074512 (2007).

    Article  Google Scholar 

  20. K. Remashan, J.H. Jang, D.K. Hwang, and S.J. Park, ZnO-based thin film transistors having high refractive index silicon nitride gate. Appl. Phys. Lett. 91, 182101 (2007).

    Article  Google Scholar 

  21. E.M.C. Fortunato, P.M.C. Barquinha, A.C.M. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, and L.M. Pereira, Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 85, 2541 (2004).

    Article  CAS  Google Scholar 

  22. S. Mansouri, R. Bourguiga, and F. Yakuphanoglu, Analytic model for ZnO-thin film transistor under dark and UV illumination. Curr. Appl. Phys. 12, 1619 (2012).

    Article  Google Scholar 

  23. R.L. Hoffman, B.J. Norris, and J.F. Wager, ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733 (2003).

    Article  CAS  Google Scholar 

  24. M.G. McDowell, R.J. Sanderson, and I.G. Hill, Combinatorial study of zinc tin oxide thin-film transistors. Appl. Phys. Lett. 92, 013502 (2008).

    Article  Google Scholar 

  25. C. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, and D. Zhu, Efficient modification of Cu electrode with nanometer-sized copper tetracyanoquinodimethane for high performance organic field-effect transistors. Phys. Chem. Chem. Phys. 10, 17 (2008).

    Article  Google Scholar 

  26. Y. Xu, and P.R. Berger, High electric-field effects on short-channel polythiophene polymer field-effect transistors. J. Appl. Phys. 95, 1497 (2004).

    Article  CAS  Google Scholar 

  27. S. Amara, I. Ben Slama, K. Omri, J. El Goule, L. El Mir, K. Ben Rhouma, H. Abdelmelek, and M. Sakly, Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain. Toxicol. Ind. Health. 31, 1202 (2015).

    Article  CAS  Google Scholar 

  28. L. El Mir, Luminescence properties of calcium doped zinc oxide nanoparticles. J. Lumin. 186, 98 (2017).

    Article  Google Scholar 

  29. L. El Mir, Contactless visible luminescence thermometry based on β-phase zinc silicate confined in silica glass matrix. J. Inorg. Organomet. Polym. Mater. 31, 2648 (2021).

    Article  Google Scholar 

  30. M. Ba, S. Mansouri, A. Jouili, Y. Yousfi, L. Chouiref, M. Jdir, and L. El Mir, Controlling of hysteresis by varying ZnO-nanoparticles amount in P3HT: ZnO hybrid thin-film transistor: modeling. J. Electron. Mater. 52, 1203 (2023).

    Article  CAS  Google Scholar 

  31. M.L. Chabinyc, J.P. Lu, R.A. Street, Y. Wu, P. Liu, and B.S. Ong, Short channel effects in regioregular poly(thiophene) thin film transistors. J. Appl. Phys. 96, 2063 (2004).

    Article  CAS  Google Scholar 

  32. T. Hirose, T. Nagase, T. Kobayashi, R. Ueda, A. Otomo, and H. Naito, Device characteristics of short-channel polymer field-effect transistors. Appl. Phys. Lett. 97, 183 (2010).

    Article  Google Scholar 

  33. M.D. Austin, and S.Y. Chou, Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. 81, 4431 (2002).

    Article  CAS  Google Scholar 

  34. J.N. Haddock, X. Zhang, S. Zheng, Q. Zhang, S.R. Marder, and B. Kippelen, A comprehensive study of short channel effects in organic field-effect transistors. Org. Electron. 7, 45 (2006).

    Article  Google Scholar 

  35. W. Boukhili, M. Mahdouani, R. Bourguiga, and J. Puigdollers, Characterization and modeling of organic thin-film transistors based π-conjugated small molecule tetraphenyldibenzoperiflanthene: effects of channel length. Microelectron. Eng. 160, 39 (2016).

    Article  CAS  Google Scholar 

  36. S. Olthof, S. Singh, S.K. Mohapatra, S. Barlow, S.R. Marder, B. Kippelen, and A. Kahn, Passivation of trap states in unpurified and purified C60 and the influence on organic field-effect transistor performance. Appl. Phys. Lett. 101, 253303 (2012).

    Article  Google Scholar 

  37. K.P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, and G. Schitter, Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96, 6431 (2004).

    Article  CAS  Google Scholar 

  38. J.B. Koo, J.H. Lee, C.H. Ku, S.C. Lim, S.H. Kim, J.W. Lim, S.J. Yun, and T. Zyung, The effect of channel length on turn-on voltage in pentacene-based thin film transistor. Synth. Met. 156, 633 (2006).

    Article  CAS  Google Scholar 

  39. L.A. Majewski, and M. Grell, Organic field-effect transistors with ultrathin modified gate insulator. Synth. Met. 151, 175 (2005).

    Article  CAS  Google Scholar 

  40. G. Horowitz, Tunneling current in polycrystalline organic thin-film transistors. Adv. Funct. Mater. 13, 53 (2003).

    Article  CAS  Google Scholar 

  41. G. Wang, J. Swensen, D. Moses, and A.J. Heeger, Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors. Appl. Phys. Lett. 93, 6137 (2003).

    CAS  Google Scholar 

  42. H. Bässler, Charge transport in disordered organic photoconductors a monte carlo simulation study. Phys. Status Solidi 175, 15 (1993).

    Article  Google Scholar 

  43. N.D. Lu, L. Li, P.X. Sun, W. Banerjee, and M. Liu, A unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors a unified physical model of Seebeck coefficient in amorphous oxide semiconductor thin-film transistors. J. Appl. Phys. 116, 104502 (2014).

    Article  Google Scholar 

  44. L. Li, K.S. Chung, and J. Jang, Field effect mobility model in organic thin film transistor. Appl. Phys. Lett. 98, 023305 (2011).

    Article  Google Scholar 

  45. O. Marinov, M.J. Deen, U. Zschieschang, and H. Klauk, Organic thin-film transistors: Part I—compact DC modeling. IEEE Trans. Electron Dev. 56, 2952 (2009).

    Article  CAS  Google Scholar 

  46. G. Horowitz, R. Hajlaoui, H. Bouchriha, R. Bourguiga, and M. Hajlaoui, The concept of “threshold voltage” in organic field-effect transistors. Adv. Mater. 10, 923 (1998).

    Article  CAS  Google Scholar 

  47. L. Wang, Lu. Nianduan, L. Li, Z. Ji, W. Banerjee, and M. Liu, Compact model for organic thin-film transistor with gaussian density of states. AIP Adv. 5, 047123 (2015).

    Article  Google Scholar 

  48. A. Jouili, S. Mansouri, L. El Ahmed Al-Ghamdi, and F.Y. Mir, Controlling of DOS of TFTs based 6,13-bis(triisopropylsilylethynyl) pentacene by solar light illumination. Synth. Met. 220, 591 (2016).

    Article  CAS  Google Scholar 

  49. A. Jouili, S. Mansouri, A.G. Al-Sehemi, A.A. Al-Ghamdi, L. El Mir, and F. Yakuphanoglu, Characterization and modeling of nano-organic thin film phototransistors based on 613(Triisopropylsilylethynyl)-pentacene: photovoltaic effect. Synth Met. 233, 119 (2017).

    Article  CAS  Google Scholar 

  50. G. Kim, and K.P. Pipe, Thermoelectric model to characterize carrier transport in organic semiconductors. Phys. Rev. B 86, 085208 (2012).

    Article  Google Scholar 

  51. O. Marinov, M.J. Deen, U. Zschieschang, and H. Klauk, Organic thin-film transistors: part I-compact DC modeling. IEEE Trans. Electron Devices. 56, 2952 (2009).

    Article  CAS  Google Scholar 

  52. A. Romero, J. Jiménez-Tejada, J. González, and M. Deen, Unified electrical model for the contact regions of staggered thin film transistors. Org. Electron. 92, 106129 (2021).

    Article  CAS  Google Scholar 

  53. A. Romero, J. González, R. Picos, M.J. Deen, and J.A. Jiménez-Tejada, Evolutionary parameter extraction for an organic TFT compact model including contact effects. Org. Electron. 61, 242 (2018).

    Article  CAS  Google Scholar 

  54. L. Bürgi, T.J. Richards, R.H. Friend, and H. Sirringhaus, Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, analysis, design, and writing. The final manuscript was read and approved by all authors.

Corresponding author

Correspondence to S. Mansouri.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erouel, M., Mansouri, S., Ba, M. et al. Modeling of Electrical Characteristics of Thin-Film Transistors Based P3HT:ZnO Blend: Channel Length Layer Effect. J. Electron. Mater. 52, 5315–5326 (2023). https://doi.org/10.1007/s11664-023-10469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10469-9

Keywords

Navigation