Skip to main content
Log in

Application of Doped Clay by Plasmonic Nanoparticles in the Suzuki–Miyaura Cross-Coupling Reaction

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The goal of this paper is to study the catalytic activity of clay-based materials doped by silver, copper, and gold nanoparticles in the Suzuki–Miyaura coupling reaction. The catalysts are prepared by homogeneous deposition precipitation at 2 wt% of metal. The properties of the catalysts were obtained using these methods: SEM (scanning electron microscopy), high-angle annular dark field, EDS (energy dispersive spectroscopy), DRS/UV–Vis (diffuse reflectance spectroscopy, UV–Vis), XRD (x-ray diffraction), ICP (elementary analysis), and adsorption–desorption of N2 and infrared spectroscopy. The results showed an almost total homogeneous deposition of the metallic nanoparticles on the clay surface. All the catalysts were used in the synthesis of biphenyls using the Suzuki–Miyaura reaction with phenylboronic acid and different aryl halides under classical heating or under visible irradiation. The results have shown the obtaining of interesting coupling rates exceeding 5.44 mol/h/g which depend on the catalyst nature, the aryl halide, and the mode of the activation of the reaction. The different reaction conditions have been optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Farina, New perspectives in the cross-coupling reactions of organostannanes. J. Pure Appl. Chem. 68, 73 (1996).

    Article  CAS  Google Scholar 

  2. D. Zhang, and Q. Wang, Palladium catalyzed asymmetric Suzuki–Miyaura coupling reactions to axially chiral biaryl compounds: chiral ligands and recent advances. Coord. Chem. Rev. 286, 1 (2015).

    Article  CAS  Google Scholar 

  3. M. Sainsbury, Modern methods of aryl-aryl bond formation. Tetrahedron 36, 3327 (1980).

    Article  CAS  Google Scholar 

  4. M. Al-Amin, M. Akimoto, T. Tameno, Y. Ohki, N. Takahashi, N. Hoshiya, S. Shuto, and M. Arisawa, Suzuki–Miyaura cross-coupling reactions using a low-leaching and highly recyclable gold-supported palladium material and two types of microwave equipments. Green Chem. 15, 1142 (2013).

    Article  CAS  Google Scholar 

  5. D.K. Dumbre, P.N. Yadav, S.K. Bhargava, and V.R. Choudhary, Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acids over gold nano-particles supported on MgO (or CaO) and other metal oxides. J. Catal. 301, 134 (2013).

    Article  CAS  Google Scholar 

  6. C. González-Arellano, A. Corma, M. Iglesias, and F. Sánchez, Gold (I) and (III) catalyze Suzuki cross-coupling and homocoupling, respectively. J. Catal. 238, 497 (2006).

    Article  Google Scholar 

  7. J. Han, Y. Liu, and R. Guo, Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki–Miyaura cross-coupling reaction in water. J. Am. Chem. Soc. 131, 2060 (2009).

    Article  CAS  Google Scholar 

  8. M.M. Khodaei, and M. Dehghan, A green and cost-effective approach for the production of gold nanoparticles using corn silk extract: a recoverable catalyst for Suzuki–Miyaura reaction and adsorbent for removing of dye pollutants. Polyhedron 162, 219 (2019).

    Article  CAS  Google Scholar 

  9. J. Ma, X. Cui, B. Zhang, M. Song, and Y. Wu, Ferrocenylimidazoline palladacycles: efficient phosphine-free catalysts for Suzuki–Miyaura cross-coupling reaction. Tetrahedron 63, 5529 (2007).

    Article  CAS  Google Scholar 

  10. N. Miyaura, Metal-catalyzed cross-coupling reactions of organoboron compounds with organic halides, Metal-catalyzed cross-coupling reactions. (Weinheim: Wiley, 2004), pp. 41–123.

    Chapter  Google Scholar 

  11. N. Miyaura, and A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457 (1995).

    Article  CAS  Google Scholar 

  12. S.K. Movahed, S. Miraghaee, and M. Dabiri, AuPd alloy nanoparticles decorated graphitic carbon nitride as an excellent photocatalyst for the visible-light-enhanced Suzuki–Miyaura cross-coupling reaction. J. Alloys Compd. 819, 152994 (2020).

    Article  CAS  Google Scholar 

  13. M. Pérez-Lorenzo, Palladium nanoparticles as efficient catalysts for Suzuki cross-coupling reactions. J. Phys. Chem. Lett. 3, 167 (2012).

    Article  Google Scholar 

  14. H.H. Shin, E. Kang, H. Park, T. Han, C.-H. Lee, and D.-K. Lim, Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible-light-induced Suzuki–Miyaura coupling reaction. J. Mater. Chem. A 5, 24965 (2017).

    Article  CAS  Google Scholar 

  15. M.G. Speziali, A.G. Marques, D. da Silva, M. Vaz, A. de Miranda, L. Monteiro, and P.A. Robles-Dutenhefner, Air stable ligandless heterogeneous catalyst systems based on Pd and Au supported in SiO2 and MCM-41 for Suzuki–Miyaura cross-coupling in aqueous medium. Appl. Catal. A 462–463, 39 (2013).

    Article  CAS  Google Scholar 

  16. P. Verma, K. Tamaki, T. Shimojitosho, T. Yoshii, Y. Kuwahara, K. Mori, and H. Yamashita, Size effects in plasmonic gold nanorod based Pd-rGO hybrid catalyst for promoting visible-light-driven Suzuki–Miyaura coupling reaction. Catal. Today 410, 332 (2023).

    Article  CAS  Google Scholar 

  17. Q. Xiao, S. Sarina, E. Jaatinen, J. Jia, D.P. Arnold, H. Liu, and H. Zhu, Efficient photocatalytic Suzuki cross-coupling reactions on Au-Pd alloy nanoparticles under visible light irradiation. Green Chem. 16, 4272 (2014).

    Article  CAS  Google Scholar 

  18. J.J. YinLiebscher, Carbon−carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev. 107, 133 (2007).

    Article  Google Scholar 

  19. T. Yoshii, Y. Kuwahara, K. Mori, and H. Yamashita, Design of Pd–graphene–Au nanorod nanocomposite catalyst for boosting Suzuki–Miyaura coupling reaction by assistance of surface plasmon resonance. J. Phys. Chem. C 123, 24575 (2019).

    Article  CAS  Google Scholar 

  20. J. Zhi, D. Song, Z. Li, X. Lei, and A. Hu, Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: efficient heterogeneous catalysts for Suzuki–Miyaura cross coupling reaction in aqueous media. Chem. Commun. 47, 10707 (2011).

    Article  CAS  Google Scholar 

  21. T.R. Martin, C.A. Fortulan, Projeto de uma máquina de usinagem de protótipos de isoladores cerâmicos em escala reduzida, Resumos, (2008)

  22. P.L. Boulas, M. Gómez-Kaifer, and L. Echegoyen, Electrochemistry of supramolecular systems. Angew. Chem. Int. End. 37, 216 (1998).

    Article  CAS  Google Scholar 

  23. T. Yoshii, Y. Kuwahara, K. Mori, and H. Yamashita, Promotional effect of surface plasmon resonance on direct formation of hydrogen peroxide from H2 and O2 over Pd/Graphene-Au nanorod catalytic system. J. Catal. 394, 259 (2021).

    Article  CAS  Google Scholar 

  24. Z.-H. Gao, K. Wei, T. Wu, J. Dong, D.-E. Jiang, S. Sun, and L.-S. Wang, A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 144, 5258 (2022).

    Article  CAS  Google Scholar 

  25. A. Mousavi-Majd, S. Ghasemi, and S.R. Hosseini, Zeolitic imidazolate framework derived porous ZnO/Co3O4 incorporated with gold nanoparticles as ternary nanohybrid for determination of hydrazine. J. Alloys Compd. 896, 162922 (2022).

    Article  CAS  Google Scholar 

  26. S. Lapointe, A. Sarbajna, and V.H. Gessner, Ylide-substituted phosphines: a platform of strong donor ligands for gold catalysis and palladium-catalyzed coupling reactions. Acc. Chem. Res. 55, 770 (2022).

    Article  CAS  Google Scholar 

  27. N. Ameur, G. Ferouani, Z. Belkadi, R. Bachir, J.J. Calvino, and A. Hakkoum, A novel approach for the preparation of silver nanoparticles supported on titanate nanotubes and bentonite-application in the synthesis of heterocyclic compound derivatives. Mater. Res. Express 6, 125051 (2019).

    Article  CAS  Google Scholar 

  28. G. Ferouani, N. Ameur, and R. Bachir, Preparation and characterization of supported bimetallic gold–iron nanoparticles, and its potential for heterogeneous catalysis. Res. Chem. Intermed. 46, 1373 (2020).

    Article  CAS  Google Scholar 

  29. D. Han, Z. Bao, H. Xing, Y. Yang, Q. Ren, and Z. Zhang, Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions. Nanoscale 9, 6026 (2017).

    Article  CAS  Google Scholar 

  30. J. Chen, J. Cen, X. Xu, and X. Li, The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol. 6, 349 (2016).

    Article  CAS  Google Scholar 

  31. Q. Xiang, J. Yu, and M. Jaroniec, Chem. Soc. Rev. 41, 782 (2012).

    Article  CAS  Google Scholar 

  32. Y. Chen, and L. Feng, Silver nanoparticles doped TiO2 catalyzed Suzuki-coupling of bromoaryl with phenylboronic acid under visible light. J. Photochem. Photobiol. B 205, 111807 (2020).

    Article  CAS  Google Scholar 

  33. Z. Kaszkur, Nanopowder diffraction analysis beyond the Bragg law applied to palladium. J. Appl. Crystallogr. 33, 87 (2000).

    Article  CAS  Google Scholar 

  34. M. Cozzolino, M. Di Serio, R. Tesser, and E. Santacesaria, Grafting of titanium alkoxides on high-surface SiO2 support: An advanced technique for the preparation of nanostructured TiO2/SiO2 catalysts. Appl. Catal. A 325, 256 (2007).

    Article  CAS  Google Scholar 

  35. E.A. Cloutis, K.A. McCormack, J.F. Bell, A.R. Hendrix, D.T. Bailey, M.A. Craig, S.A. Mertzman, M.S. Robinson, and M.A. Riner, Ultraviolet spectral reflectance properties of common planetary minerals. Icarus 197, 321 (2008).

    Article  Google Scholar 

  36. R. Zanella, S. Giorgio, C.-H. Shin, C.R. Henry, and C. Louis, Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal. 222, 357 (2004).

    Article  CAS  Google Scholar 

  37. S. Oros-Ruiz, R. Zanella, S.E. Collins, A. Hernández-Gordillo, and R. Gómez, Photocatalytic hydrogen production by Au–MxOy (MAg, Cu, Ni) catalysts supported on TiO2. Catal. Commun. 47, 1 (2014).

    Article  CAS  Google Scholar 

  38. A. Chrouda, S. Mahmoud Ali Ahmed, and M. Babiker Elamin, Preparation of nanocatalysts using deposition precipitation with urea: mechanism, advantages and results. ChemBioEng Rev. 9, 248 (2022).

    Article  CAS  Google Scholar 

  39. S.F. Azha, L. Sellaoui, E.H.E. Yunus, C.J. Yee, A. Bonilla-Petriciolet, A. Ben Lamine, and S. Ismail, Iron-modified composite adsorbent coating for azo dye removal and its regeneration by photo-Fenton process: synthesis, characterization and adsorption mechanism interpretation. Chem. Eng. J. 361, 31 (2019).

    Article  CAS  Google Scholar 

  40. M. Ghiaci, M.E. Sedaghat, H. Aghaei, and A. Gil, Synthesis of CdS- and ZnS-modified bentonite nanoparticles and their applications to the degradation of eosin B. J. Appl. Chem. Biotechnol. 84, 1908 (2009).

    Article  CAS  Google Scholar 

  41. Y. Li, J. Zhan, L. Huang, H. Xu, H. Li, R. Zhang, and S. Wu, Synthesis and photocatalytic activity of a bentonite/g-C3N4 composite. RSC Adv. 4, 11831 (2014).

    Article  CAS  Google Scholar 

  42. K.-H. Hu, D.-F. Zhao, and J.-S. Liu, Synthesis of nano-MoS2/bentonite composite and its application for removal of organic dye. Trans. Nonferrous Met. Soc. China 22, 2484 (2012).

    Article  CAS  Google Scholar 

  43. D. Rostamzadeh, and S. Sadeghi, Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment. J. Photochem. Photobiol. A 431, 113947 (2022).

    Article  CAS  Google Scholar 

  44. G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, and R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura coupling reaction. J. Am. Chem. Soc. 131, 8262 (2009).

    Article  CAS  Google Scholar 

  45. A. Balanta, C. Godard, and C. Claver, Pd nanoparticles for C-C coupling reactions. Chem. Soc. Rev. 40, 4973 (2011).

    Article  CAS  Google Scholar 

  46. S. Ghorai, A.K. Sarkar, A.B. Panda, and S. Pal, Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour. Technol. 144, 485 (2013).

    Article  CAS  Google Scholar 

  47. N. Ameur, Z. Fandi, F. Taieb-Brahimi, G. Ferouani, S. Bedrane, and R. Bachir, A novel approach of ceria nanotubes and plasmonic metal-doped ceria nanotubes application: anticorrosion and photodegradation potential. Appl. Phys. A 127, 162 (2021).

    Article  CAS  Google Scholar 

  48. Z. Zheng, T. Tachikawa, and T. Majima, Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137, 948 (2015).

    Article  CAS  Google Scholar 

  49. J. Guo, Y. Zhang, L. Shi, Y. Zhu, M.F. Mideksa, K. Hou, W. Zhao, D. Wang, M. Zhao, X. Zhang, J. Lv, J. Zhang, X. Wang, and Z. Tang, Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 139, 17964 (2017).

    Article  CAS  Google Scholar 

  50. E. Kang, H.H. Shin, and D.-K. Lim, Interface-controlled Pd nanodot-Au nanoparticle colloids for efficient visible-light-induced photocatalytic Suzuki–Miyaura coupling reaction. Catalysts 8, 463 (2018).

    Article  Google Scholar 

  51. P. Verma, Y. Kuwahara, K. Mori, and H. Yamashita, Pd/Ag and Pd/Au bimetallic nanocatalysts on mesoporous silica for plasmon-mediated enhanced catalytic activity under visible light irradiation. J. Mater. Chem. A 4, 10142 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Research Center for Advanced Materials Science (RCAMS)” at King Khalid University, Saudi Arabia, for funding this work under the grant number RCAMS/KKU/016-22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Nasr.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, S. Application of Doped Clay by Plasmonic Nanoparticles in the Suzuki–Miyaura Cross-Coupling Reaction. J. Electron. Mater. 52, 5362–5376 (2023). https://doi.org/10.1007/s11664-023-10468-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10468-w

Keywords

Navigation