Skip to main content
Log in

Two-Dimensional ZnS Quantum Dots for Gas Sensors: Electronic and Adsorption Properties

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 28 May 2023

This article has been updated

Abstract

A sustainable and healthy environment for human settlement depends on clean air. There is high demand for effective treatment techniques for hazardous gases produced by industry since they are important contributors to air pollution. Here, we use density functional theory to examine the electronic and optical characteristics of two-dimensional zinc sulfide (2D-ZnS) quantum dots as well as their interactions with the three most harmful gases, carbon monoxide (CO), nitrogen monoxide (NO), and methane (CH4). The electronic energy gap, dipole moment, chemical potential, electronegativity, chemical hardness, and adsorption energy are estimated. Planar ZnS quantum dots show high capability for intermolecular bonding with several hazardous gases. The energy gap decreases and the reactivity increases by bonding with the hazardous gases. The UV–Vis spectra confirm the redshift to lower energies by the adsorption of CO and NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

Change history

References

  1. S. Nayak, L.C. Goveas, R. Selvaraj, R. Vinayagam, and S. Manickam, Advances in the utilisation of carbon-neutral technologies for a sustainable tomorrow: a critical review and the path forward. Bioresour. Technol. 7, 128073 (2022).

    Article  Google Scholar 

  2. S. Chu, and A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).

    Article  CAS  Google Scholar 

  3. D.W. Keith, Why capture CO2 from the atmosphere? Science 325, 1654 (2009).

    Article  CAS  Google Scholar 

  4. R.S. Haszeldine, Carbon capture and storage: how green can black be? Science 325, 1647 (2009).

    Article  CAS  Google Scholar 

  5. D. Kim, N. Teratani, and M. Nakayama, Self-narrowing and photoetching effects on the size distribution of CdS quantum dots prepared by a reverse-micelle method. Jpn. J. Appl. Phys. 41, 5064 (2002).

    Article  CAS  Google Scholar 

  6. A. Ishizumi, and Y. Kanemitsu, Luminescence spectra and dynamics of Mn-doped CdS core/shell nanocrystals. Adv. Mater. 18, 1083 (2006).

    Article  CAS  Google Scholar 

  7. G. Ramalingam, P. Kathirgamanathan, G. Ravi, T. Elangovan, N. Manivannan, and K. Kasinathan, Quantum confinement effect of 2D nanomaterials, Quantum dots-fundamental Apply. ed. F. Divsar (London: IntechOpen, 2020).

    Google Scholar 

  8. K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954 (1996).

    Article  CAS  Google Scholar 

  9. H. Abdelsalam, H. Elhaes, and M.A. Ibrahim, Tuning electronic properties in graphene quantum dots by chemical functionalization: density functional theory calculations. Chem. Phys. Lett. 695, 138 (2018).

    Article  CAS  Google Scholar 

  10. H. Abdelsalam, V.A. Saroka, M. Ali, N.H. Teleb, H. Elhaes, and M.A. Ibrahim, Stability and electronic properties of edge functionalized silicene quantum dots: a first principles study. Phys. E Low Dimens. Syst. Nanostruct. 108, 339 (2019).

    Article  CAS  Google Scholar 

  11. W. Osman, H. Abdelsalam, M. Ali, N.H. Teleb, I.S. Yahia, M.A. Ibrahim, and Q. Zhang, Electronic and magnetic properties of graphene quantum dots doped with alkali metals. J. Mater. Res. Technol. 11, 1517 (2021).

    Article  CAS  Google Scholar 

  12. K.H. Park, S. Jung, J. Kim, B.-M. Ko, W.-G. Shim, S.-J. Hong, and S.H. Song, Boosting photovoltaic performance in organic solar cells by manipulating the size of MoS2 quantum dots as a hole-transport material. Nanomaterials 11, 1464 (2021).

    Article  CAS  Google Scholar 

  13. Y. Ding, P. He, S. Li, B. Chang, S. Zhang, Z. Wang, J. Chen, J. Yu, S. Wu, and H. Zeng, Efficient full-color boron nitride quantum dots for thermostable flexible displays. ACS Nano 15, 14610 (2021).

    Article  CAS  Google Scholar 

  14. W. Yin, X. Bai, X. Zhang, J. Zhang, X. Gao, and W.W. Yu, Multicolor light-emitting diodes with MoS2 quantum dots. Part. Part. Syst. Charact. 36, 1800362 (2019).

    Article  Google Scholar 

  15. A. Manikandan, Y.-Z. Chen, C.-C. Shen, C.-W. Sher, H.-C. Kuo, and Y.-L. Chueh, A critical review on two-dimensional quantum dots (2D QDs): from synthesis toward applications in energy and optoelectronics. Prog. Quantum Electron. 68, 100226 (2019).

    Article  Google Scholar 

  16. P.T. Nga, N. Van Chuc, V.D. Chinh, N.X. Nghia, P.T. Dung, D.N. Thuan, P.T. Cuong, C.V. Ha, V.H. Hanh, and V.T.K. Lien, Synthesis and optical properties of colloidal core–shell semiconductor nanocrystals quantum dots for sensory application. Sens. IEEE 2006, 22 (2006).

    Google Scholar 

  17. Y. Gui, X. Peng, K. Liu, and Z. Ding, Adsorption of C2H2, CH4 and CO on Mn-doped graphene: atomic, electronic, and gas-sensing properties. Phys. E Low-Dimens. Syst. Nanostruct. 119, 113959 (2020).

    Article  CAS  Google Scholar 

  18. G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, and I.G. Economou, Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes: a combined experimental and Monte Carlo Molecular simulation study. J. Supercrit. Fluids. 55, 510 (2010).

    Article  CAS  Google Scholar 

  19. J.L. Zhu, Y.H. Wang, J.C. Zhang, and R.Y. Ma, Experimental investigation of adsorption of NO and SO2 on modified activated carbon sorbent from flue gases. Energy Convers. Manag. 46, 2173 (2005).

    Article  CAS  Google Scholar 

  20. C.E. Brown, and P.G. Hall, Physical adsorption of gases on graphite. Trans. Faraday Soc. 67, 3558 (1971).

    Article  CAS  Google Scholar 

  21. J. Ding, Y. Jin, H. Chen, H. Fu, C. Xu, and B. Xiao, The design of heterojunctions based on boron-/phosphorus-doped graphene and ZnO monolayer to enhance adsorption properties for toxic gases. J. Appl. Phys. 131, 25108 (2022).

    Article  CAS  Google Scholar 

  22. G. Lee, D.K. Yoo, I. Ahmed, H.J. Lee, and S.H. Jhung, Metal–organic frameworks composed of nitro groups: preparation and applications in adsorption and catalysis. Chem. Eng. J. 451, 138538 (2022).

    Article  Google Scholar 

  23. X. Du, Y. Cheng, Z. Liu, Z. Hou, T. Wu, R. Lei, and C. Shu, Study on the adsorption of CH4, CO2 and various CH4/CO2 mixture gases on shale. Alex. Eng. J. 59, 5165–5178 (2020).

    Article  Google Scholar 

  24. E. Kouvelos, K. Kesore, T. Steriotis, H. Grigoropoulou, D. Bouloubasi, N. Theophilou, S. Tzintzos, and N. Kanelopoulos, High pressure N2/CH4 adsorption measurements in clinoptilolites. Microporous Mesoporous Mater. 99, 106 (2007).

    Article  CAS  Google Scholar 

  25. H. Yang, M. Gong, and Y. Chen, Preparation of activated carbons and their adsorption properties for greenhouse gases: CH4 and CO2. J. Nat. Gas Chem. 20, 460 (2011).

    Article  CAS  Google Scholar 

  26. A. Bandara, S. Dobashi, J. Kubota, K. Onda, A. Wada, K. Domen, C. Hirose, and S.S. Kano, Adsorption of CO and NO on NiO(111) Ni(111) surface studied by infrared-visible sum frequency generation spectroscopy. Surf. Sci. 387, 312 (1997).

    Article  Google Scholar 

  27. L. Liu, D. Nicholson, and S.K. Bhatia, Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: a molecular simulation study. Chem. Eng. Sci. 121, 268 (2015).

    Article  CAS  Google Scholar 

  28. D.L. Duong, S.J. Yun, and Y.H. Lee, van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803 (2017).

    Article  CAS  Google Scholar 

  29. M.-Y. Li, C.-H. Chen, Y. Shi, and L.-J. Li, Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19, 322 (2016).

    Article  Google Scholar 

  30. Y. Niu, J. Li, J. Gao, X. Ouyang, L. Cai, and Q. Xu, Two-dimensional quantum dots for biological applications. Nano Res. 14, 3820 (2021).

    Article  Google Scholar 

  31. H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng, and F. Kang, Two-dimensional materials for thermal management applications. Joule 2, 442 (2018).

    Article  CAS  Google Scholar 

  32. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J.O. Island, K.L. Narasimha-Acharya, S.I. Blanter, D.J. Groenendijk, M. Buscema, G.A. Steele, and J.V. Alvarez, Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 25001 (2014).

    Article  CAS  Google Scholar 

  33. H. Abdelsalam, and Q.F. Zhang, Properties and applications of quantum dots derived from two-dimensional materials. Adv. Phys. X 7, 2048966 (2022).

    Google Scholar 

  34. X. Liu, K. Watanabe, T. Taniguchi, B.I. Halperin, and P. Kim, Quantum hall drag of exciton condensate in graphene. Nat. Phys. 13, 746 (2017).

    Article  CAS  Google Scholar 

  35. W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246 (2013).

    Article  CAS  Google Scholar 

  36. H. Abdelsalam, M.M. Atta, W. Osman, and Q. Zhang, Two-dimensional quantum dots for highly efficient heterojunction solar cells. J. Colloid Interface Sci. 603, 48 (2021).

    Article  CAS  Google Scholar 

  37. M. Bernardi, M. Palummo, and J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013).

    Article  CAS  Google Scholar 

  38. M. Amani, D.-H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S.R. Madhvapathy, R. Addou, S. Kc, and M. Dubey, Near-unity photoluminescence quantum yield in MoS2. Science. 350(80), 1065 (2015).

    Article  CAS  Google Scholar 

  39. M.J. Frisch, Gaussian16 revision A 03 (Wallingford, CT, USA: Gaussian Inc., 2016).

    Google Scholar 

  40. E. Rudberg, P. Sałek, and Y. Luo, Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Lett. 7, 2211 (2007).

    Article  CAS  Google Scholar 

  41. H. Abdelsalam, V.A. Saroka, and W.O. Younis, Phosphorene quantum dot electronic properties and gas sensing. Phys. E Low-Dimens. Syst. Nanostruct. 107, 105 (2019).

    Article  CAS  Google Scholar 

  42. M.A.S. Sakr, F.F. Sherbiny, and A.-A.S. El-Etrawy, Hydrazone-based materials; DFT, TD-DFT, NBO analysis, fukui function, MESP analysis, and solar cell applications. J. Fluoresc. 35, 1 (2022).

    Google Scholar 

  43. M.A.S. Sakr, E.S.A. Abdel Gawad, M.T.H. Abou Kana, and E.Z.M. Ebeid, Photophysical, photochemical and laser behavior of some diolefinic laser dyes in sol–gel and methyl methacrylate/2-hydroxyethyl methacrylate copolymer matrices. Opt. Laser Technol. 71, 78 (2015).

    Article  CAS  Google Scholar 

  44. A.A. AboAlhasan, M.A.S. Sakr, M.F. Abdelbar, H.S. El-Sheshtawy, S.A. El-Daly, E.-Z.M. Ebeid, R.H. Al-Ashwal, and S.M. Al-Hazmy, Enhanced energy transfer from diolefinic laser dyes to meso-tetrakis (4-sulfonatophenyl) porphyrin immobilized on silver nanoparticles: DFT, TD-DFT and spectroscopic studies. J. Saudi Chem. Soc. 26, 101491 (2022).

    Article  CAS  Google Scholar 

  45. M.A.S. Sakr, and M.A. Saad, Spectroscopic investigation, DFT, NBO and TD-DFT calculation for porphyrin (PP) and porphyrin-based materials (PPBMs). J. Mol. Struct. 1258, 132699 (2022).

    Article  CAS  Google Scholar 

  46. M.E.M. Sakr, M.T.H. Abou Kana, A.H.M. Elwahy, H.M. Kandel, M.S. Abdelwahed, S.A. El-Daly, and E.Z.M. Ebeid, Optical, photo physical parameters and photo stability of 6-substituted-1, 2, 4-triazine mono glucosyl derivative to act as a laser dye in various solvents, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 232, 118145 (2020).

    Article  CAS  Google Scholar 

  47. S.A.A. Gawad, and M.A.S. Sakr, Spectroscopic investigation, DFT and TD-DFT calculations of 7-(diethylamino) coumarin (C466). J. Mol. Struct. 1248, 131413 (2021).

    Article  Google Scholar 

  48. M.E.M. Sakr, M.T.H.A. Kana, A.H.M. Elwahy, S.A. El-Daly, and E.Z.M. Ebeid, Novel far UV–Vis absorbing bis(dihydrophenanthro[9,10-e][1,2,4]triazine) derivative dyes: synthesis, optical, photophysical and solvatochromic properties. J. Mol. Struct. 1206, 127690 (2020).

    Article  CAS  Google Scholar 

  49. M.A.S. Sakr, S.A. El-Daly, E.-Z.M. Ebeid, S.M. Al-Hazmy, and M. Hassan, Quinoline-based materials: spectroscopic investigations as well as DFT and TD-DFT calculations. J. Chem. 2022, 1 (2022).

    Article  Google Scholar 

  50. Y. Ge, J. Ji, Q. Zhang, Z. Yuan, R. Wang, W. Zhang, and S. Sang, Unraveling the intrinsic magnetic property of triangular zigzag edge bilayer graphene nanoflakes: a first-principles theoretical study. Chem. Phys. Lett. 730, 326 (2019).

    Article  CAS  Google Scholar 

  51. H. Ezzat, A.A. Menazea, W. Omara, O.H. Basyouni, S.A. Helmy, A.A. Mohamed, W. Tawfik, and M. Ibrahim, DFT: B3LYP/LANL2DZ study for the removal of Fe, Ni, Cu, As, Cd and Pb with chitosan. Biointerface Res. Appl. Chem. 10, 7002 (2020).

    Article  CAS  Google Scholar 

  52. A. Abkari, I. Chaabane, and K. Guidara, DFT (B3LYP/LanL2DZ and B3LYP/6311G+ (d, p)) comparative vibrational spectroscopic analysis of organic–inorganic compound bis (4-acetylanilinium) tetrachlorocuprate (II). Phys. E Low Dimens. Syst. Nanostruct. 81, 136 (2016).

    Article  CAS  Google Scholar 

  53. M.A.M. El-Mansy, W. Osman, and H. Abdelsalam, The electronic and optical absorption properties of pristine, homo and hetero Bi-nanoclusters. Chem. Phys. 544, 111113 (2021).

    Article  CAS  Google Scholar 

  54. S.A. Abdel-Latif, and A.A. Mohamed, Synthesis, spectroscopic characterization, first order nonlinear optical properties and DFT calculations of novel Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) complexes with 1,3-diphenyl-4-phenylazo-5-pyrazolone ligand. J. Mol. Struct. 1153, 248 (2018).

    Article  CAS  Google Scholar 

  55. M. Bourass, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S.M. Bouzzine, and M. Bouachrine, DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells. Chem. Cent. J. 10, 1 (2016).

    Article  Google Scholar 

  56. M.A. Saad, M.A.S. Sakr, V.A. Saroka, and H. Abdelsalam, Chemically modified covalent organic frameworks for a healthy and sustainable environment: first-principles study. Chemosphere 308, 136581 (2022).

    Article  CAS  Google Scholar 

  57. P. Aravindan, K. Sivaraj, C. Kamal, P. Vennila, and G. Venkatesh, Synthesis, molecular structure, spectral characterization, molecular docking and biological activities of (E)-N-(2-methoxy benzylidene) anthracene-2-amine and Co(II), Cu(II) and Zn(II) complexes. J. Mol. Struct. 1229, 129488 (2021).

    Article  CAS  Google Scholar 

  58. V.T.K. Lien and C.V. Ha. Le Tien Ha and Nguyen Nhu Dat, in journal of physics: conference series (AMSN08), Vol. 187 (IOP Publishing, 2009), p. 12028.

  59. N.G. Nair, M. Blanco, W. West, F.C. Weise, S. Greenbaum, and V.P. Reddy, Fluorinated boroxin-based anion receptors for lithium ion batteries: fluoride anion binding, Ab initio calculations, and ionic conductivity studies. J. Phys. Chem. A. 113, 5918 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 12274361), the Ministry of Science and Technology, Foreign Experts Program (Nos. QN2021014007L, QN2022014009L), and the Natural Science Foundation of Jiangsu Province (BK20211361, 20KJA430004).

Funding

This work is supported by the National Natural Science Foundation of China (No. 12274361), the Ministry of Science and Technology, Foreign Experts Program (Nos. QN2021014007L, QN2022014009L), and the Natural Science Foundation of Jiangsu Province (BK20211361, 20KJA430004). This work is also supported by Researchers Supporting Project (No. RSP2023R468), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

MASS: Writing-review and editing, MAS: Software, and calculations, HA: Visualization, and Investigation. QZ: Data Curation, Visualization, and Investigation.

Corresponding authors

Correspondence to Mahmoud A. S. Sakr, Hazem Abdelsalam or Qinfang Zhang.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Consent to Participate

This article does not contain any studies involving animals performed by any of the authors.

Consent to Publish

All authors mentioned in the manuscript have given consent for submission and subsequent publication of the manuscript.

Ethical Approval

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Funding information was updated.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakr, M.A.S., Saad, M.A., Abdelsalam, H. et al. Two-Dimensional ZnS Quantum Dots for Gas Sensors: Electronic and Adsorption Properties. J. Electron. Mater. 52, 5227–5238 (2023). https://doi.org/10.1007/s11664-023-10455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10455-1

Keywords

Navigation