Skip to main content
Log in

Tuning Thermoelectric Properties of Spin-Coated Cu2SnS3 Thin Films by Annealing

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Room-temperature thermoelectric (TE) properties of spin-coated copper tin sulfide (CTS) thin films were studied as a function of annealing temperature in the range 350–500°C. X-ray diffraction patterns revealed that the synthesized simples are for a pure CTS structure but only for an annealing temperature less that 450°C. Hall effect measurements showed a maximum of carrier concentration for the annealing at 400°C. This results in the maximum of electrical conductivity and maximum of mobility. TE measurements revealed that, with annealing, one can access band flattening, through the increase of the effective mass of the carrier. This is, however, challenged by the increase of carrier concentration and, consequently, results in a pronounced decrease in the Seebeck coefficient. The TE power factor was observed to be tunable by annealing. Nevertheless, CTS films remain to be doped for future investigations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Q. Tan, W. Sun, Z. Li, and J.F. Li, Enhanced thermoelectric properties of earth-abundant Cu2 SnS3 via In doping effect. J. Alloys Compd. 672, 558 (2016).

    Article  CAS  Google Scholar 

  2. J. Guan, Z. Zhang, M. Dou, J. Ji, Y. Song, J. Liu, Z. Li, and F. Wang, Thermoelectric properties of Bi-doped SnS: first-principle study. J. Phys. Chem. Solids 137, 109182 (2020).

    Article  CAS  Google Scholar 

  3. Y. Shen, C. Li, R. Huang, R. Tian, Y. Ye, L. Pan, K. Koumoto, R. Zhang, C. Wan, and Y. Wang, Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Sci. Rep. 6, 32501 (2016).

    Article  CAS  Google Scholar 

  4. J.G. Snyder, and E.S. Toberer, Complex thermoelectric materials. Nat. Mater 7, 105 (2008).

    Article  CAS  Google Scholar 

  5. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48(1), 45 (2003).

    Article  CAS  Google Scholar 

  6. Y. Tang, Z.M. Gibbs, L.A. Agapito, G. Li, H.S. Kim, M.B. Nardelli, S. Curtarolo, and G.J. Snyder, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater 14, 1223 (2015).

    Article  CAS  Google Scholar 

  7. Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, and Z. Ren, Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ. Sci. 5(1), 5246 (2012).

    Article  CAS  Google Scholar 

  8. Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66 (2011).

    Article  CAS  Google Scholar 

  9. Y. Takagiwa, Y. Pei, G. Pomrehn, and G.J. Snyder, Dopants effect on the band structure of PbTe thermoelectric material. Appl. Phys. Lett. 101, 092102 (2012).

    Article  Google Scholar 

  10. H. Zhao, X. Xu, C. Li, R. Tian, R. Zhang, R. Huang, Y. Lv, D. Li, X. Hu, L. Pan, Y. Wang, and R. Tian, Cobalt-doping in Cu2SnS3: enhanced thermoelectric performance by synergy of phase transition and band structure modification. J. Mater. Chem. A 5(44), 23267 (2017).

    Article  CAS  Google Scholar 

  11. D. Tiwari, T.K. Chaudhuri, and T. Shripathi, Electrical transport in layer-by-layer solution deposited Cu2SnS3 films: effect of thickness and annealing temperature. Appl. Surf. Sci. 297, 158 (2014).

    Article  CAS  Google Scholar 

  12. L. Xi, L. Xi, Y.B. Zhang, X.Y. Shi, J. Yang, X. Shi, L.D. Chen, W. Zhang, J. Yang, and D.J. Singh, Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3 (X= Se, S) from first principles. Phys. Rev. B Condens. Matter Mater. Phys. 86, 155201 (2012).

    Article  Google Scholar 

  13. D.M. Berg, R. Djemour, L. Gütay, G. Zoppi, S. Siebentritt, and P.J. Dale, Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520(19), 6291 (2012).

    Article  CAS  Google Scholar 

  14. P.A. Fernandes, P.M.P. Salomé, and A.F.D. Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D. Appl. Phys. 43, 215403 (2010).

    Article  Google Scholar 

  15. A. Narjis, M. Elyaagoubi, A. Outzourhit, and L. Nkhaili, Design of a simple apparatus for the measurement of the seebeck coefficient. Measurement 133, 433 (2019).

    Article  Google Scholar 

  16. K. Lohani, H. Nautiyal, N. Ataollahi, K. Maji, E. Guilmeau, and P. Scardi, Effects of grain size on the thermoelectric properties of Cu2SnS3: an experimental and first-principles study. ACS Appl. Energy Mater. 4, 12604 (2021).

    Article  CAS  Google Scholar 

  17. N. Aihara, Y. Matsumoto, and K. Tanaka, Exciton luminescence from Cu2SnS3 bulk crystals. Appl. Phys. Lett. 108, 092107 (2016).

    Article  Google Scholar 

  18. Q. Tan, W. Sun, Z. Li, and J.-F. Li, Enhanced thermoelectric properties of Earth-Abundant Cu2SnS3 via in doping effect. J. Alloys Compd. 672, 558 (2016).

    Article  CAS  Google Scholar 

  19. C. Wood, Materials for thermoelectric energy-conversion. Rep. Prog. Phys. 51, 459 (1988).

    Article  CAS  Google Scholar 

  20. K. Lohani, E. Isotta, N. Ataollahi, C. Fanciulli, A. Chiappini, and P. Scardi, Ultra-low thermal conductivity and improved thermoelectric performance in disordered nanostructured copper tin sulfide (Cu2SnS3, CTS). J. Alloys Compd. 830, 154604 (2016).

    Article  Google Scholar 

  21. Y. Zhao, Y. Gu, P. Zong, L. Pan, L. Zhang, K. Koumoto, and Y. Wang, High thermoelectric performance of Co-doped Cu2SnS3-attapulgite nano-composites achieved by synergetic manipulation of electrical and thermal transport properties. J. Alloys Compd. 887, 161338 (2021).

    Article  CAS  Google Scholar 

  22. K. Lohani, H. Nautiyal, N. Ataollahi, C. Fanciulli, I. Sergueev, M. Etter, and P. Scardi, Experimental and ab initio study of Cu2SnS3 (CTS) polymorphs for thermoelectric applications. J. Phys. Chem. C. 125, 178 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Prof. C.-T. Liang for revising English in the whole paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Welatta or A. Narjis.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welatta, F., El Kissani, A., Mellalou, A. et al. Tuning Thermoelectric Properties of Spin-Coated Cu2SnS3 Thin Films by Annealing. J. Electron. Mater. 52, 5396–5400 (2023). https://doi.org/10.1007/s11664-023-10424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10424-8

Keywords

Navigation