Skip to main content
Log in

Stability and Thermoelectric Properties of FeZrTe Alloy

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a first attempt to untangle the capacity of FeZrTe half-Heusler as a thermoelectric material. The study is conducted by means of theoretical calculations based on the density functional theory (DFT) within the full-potential linearized augmented plane wave method. Phonon dispersion is computed using the finite displacement method and supercell approach by taking the equilibrium crystal structures obtained from DFT. The results show that the FeZrTe alloy is mechanically and dynamically stable in its type I structure. The FeZrTe alloy has a semiconducting character with a 1.4-eV band gap value, governed by strong p–d hybridization. The variation of thermoelectric properties as a function of carrier concentration and temperature has been studied and analyzed. All the results pave the way for the possible building of an np couple for a thermoelectric device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Estimating the global waste heat potential. Renew. Sustain. Energy Rev. 57, 1568 (2016).

    Article  Google Scholar 

  2. T.-J. Seebeck, Ueber Die magnetische polarisation der metalle und Erze durch temperatur-differenz. Ann. Phys. 82(2), 133 (1826).

    Article  Google Scholar 

  3. S. Saini, P. Mele, K. Miyazaki, and A. Tiwari, On-chip thermoelectric module comprised of oxide thin film legs. Energy Convers. Manag. 114, 251 (2016).

    Article  CAS  Google Scholar 

  4. S.-M. Ramay, M. Hassan, Q. Mahmood, and A. Mahmood, The study of electronic, magnetic, magneto-optical and thermoelectric properties of XCr\(_{2}\)O\(_{4}\) (X = Zn, Cd) through modified Becke and Johnson potential scheme (mBJ). Curr. Appl. Phys. 17(8), 1038 (2017).

    Article  Google Scholar 

  5. A.-A. Adewale, A. Chik, R.-M. Zaki, F.-C. Pa, C.-K. Yeoh, and N.-H. Jamil, Enhancement of thermoelectric figure of merit of SrTi0.92R0.08O3 (R = Ta, Ho). AIP Conf. Proc. 2030, 020196 (2018).

    Article  Google Scholar 

  6. W. Khan, S. Hussain, J. Minar, and S. Azam, Electronic and thermoelectric properties of ternary chalcohalide semiconductors, first principles study. J. Electron. Mater. 47(2), 1131 (2018).

    Article  CAS  Google Scholar 

  7. S.-C. Lee, Robust mechanical stability, electronic structure, magnetism and thermoelectric properties of CoFeMnSb quaternary Heusler alloy, a first principle study. J. Alloys Compd. 742, 903 (2018).

    Article  Google Scholar 

  8. R.J. Quinn and J.-W.G. Bos, Advances in half-Heusler alloys for thermoelectric power generation. Mater. Adv. 2, 6246 (2021).

    Article  CAS  Google Scholar 

  9. M.-S. Lee, Ferdinand P. Poudeu, and S.D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds. Phys. Rev. B 83, 085204 (2011).

    Article  Google Scholar 

  10. P. Larson, S.D. Mahanti, and M.G. Kanatzidis, Structural stability of Ni-containing half-Heusler compounds. Phys. Rev. B 62, 12754 (2000).

    Article  CAS  Google Scholar 

  11. B.R.K. Nanda and I. Dasgupta, Journal of physics condensed matter electronic structure and magnetism in half-Heusler compounds. J. Phys. Condens.: Matter 15, 7307 (2003).

    Article  CAS  Google Scholar 

  12. R. Chen, H. Kang, R. Min, Z. Chen, E. Guo, X. Yang, Z. Tian, and T. Wang, Entropy engineering induced low thermal conductivity in medium-entropy (Zr, Ti, Hf) CoSb triple half-Heusler compounds. Materialia 23, 101453 (2022).

    Article  CAS  Google Scholar 

  13. G. Mesaritis and T. Kyrats, Hf incorporation in (Ti, Zr) NiSn half heusler solid solutions via mechanical alloying. Energies 15, 7885 (2022).

    Article  CAS  Google Scholar 

  14. V. Gokulakrishnan, S. Parthiban, K. Jeganathan, and K. Ramamurthi, Investigation on the effect of Zr doping in ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 257, 9068 (2011).

    Article  CAS  Google Scholar 

  15. Z.-K. Liu, L.-X. Yang, S.-C. Wu, C. Shekhar, J. Jiang, H.-F. Yang, Y. Zhang, S.-K. Mo, Z. Hussain, B. Yan, C. Felser, and Y.-L. Chen, Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln = Lu, Y). Nat. Commun. 7, 12924 (2016).

    Article  CAS  Google Scholar 

  16. J. Ma, V.-I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.-T. Mildebrath, C. Wolverton, A.-W. Ghosh, and W.-H. Butler, Computational investigation of half-Heusler compounds for spintronics applications. arXiv:1610.02444 [Condens.-Mat.] p 27, (2016).

  17. D. Zhao, L. Wang, L. Bo, and D. Wu, Synthesis and thermoelectric properties of Ni-doped ZrCoSb half-Heusler compounds. Metals 8, 61 (2018).

    Article  Google Scholar 

  18. J. Kangsabanik. Vikram, and A. Alam. Enamullah, Bismuth based half-Heusler alloys with giant thermoelectric figures of merit. J. Mater. Chem. A. 5, 6131 (2017).

    Article  CAS  Google Scholar 

  19. H.-J. Monkhorst and J.-D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  20. J. Perdew, A. Ruzsinsky, G.-I. Csonka, O.-A. Vydrov, G.-E. Scuseria, L.-A. Constantin, X. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  21. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  22. Z. Wu and R.-E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).

    Article  Google Scholar 

  23. J. Heyd, G.-E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  24. A. Togo and I. Tanaka, First-principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015).

    CAS  Google Scholar 

  25. X. Gonze and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).

    Article  CAS  Google Scholar 

  26. G.-K. Madsen, D.-J. Singh, and P. BoltzTra, A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  27. G.P. Srivastava, The Physics of Phonons (Taylor & Francis, New York, 1990).

    Google Scholar 

  28. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  29. S. Belarouci, T. Ouahrani, N. Benabdallah, and Á. Morales-García, Two-dimensional silicon carbide structure under uniaxial strains, electronic and bonding analysis. Comput. Mater. Sci. 151, 288 (2018).

    Article  CAS  Google Scholar 

  30. P.E. Bloch, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  31. C. Catherine, P. Jund, and J.-C. Tédenac, NiTiSn a material of technological interest: ab initio calculations of phase stability and defects. Intermetallics 46, 103 (2014).

    Article  Google Scholar 

  32. I.-K. Durukan and Y.-O. Ciftci, First-principles calculations of vibrational and optical properties of half-Heusler NaScSi. Indian J. Phys. 95, 2303 (2021).

    Article  Google Scholar 

  33. P. Vinet, J.-H. Rose, J. Ferrante, and J.-R. Smith, Universal features of the equation of state of solids. Phys. Condens.: Matter. 1, 1941 (1989).

    Article  CAS  Google Scholar 

  34. M. Born and H. Huang, Dynamical Theory of Crystal Lattices (Clarendon p, Oxford, 1954), p432.

    Google Scholar 

  35. F. Mouhat and F.-X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014).

    Article  Google Scholar 

  36. S.-F. Pugh, XCII Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philos. Mag. 45, 823 (1954).

    Article  CAS  Google Scholar 

  37. M. Ali, A. Khan, S.-H. Khan, T. Ouahrani, G. Murtaza, R. Khenata, and S.-B. Omran, First principles study of Cu based delafossite transparent conducting oxides CuXO\(_{2}\) (X= Al, Ga, In, B, La, Sc, Y). Mater. Sci. Semicond. Process 38, 57 (2015).

    Article  Google Scholar 

  38. S. Nosé, Mol. Phys. 52, 255 (1984).

  39. S. Nosé J. Chem. Phys. 81, 511 (1984).

  40. T. Ouahrani, R. Khenata, B. Lasri, A.-H. Reshak, A. Bouhemadou, and S. Binomran, First and second harmonic generation of the XAl \(_{2}\)Se\(_{4}\) (X= Zn, Cd, Hg) defect chalcopyrite compounds. Physica B: Condens. Matter 407, 3760 (2012).

    Article  CAS  Google Scholar 

  41. Q. Zhang, P. Xie, C. Liu, S. Li, X. Lei, L. Huang, G. Yuan, and F. Cai, Enhanced thermoelectric performance of Hafnium free n-type ZrNiSn half-Heusler alloys by isoelectronic Si substitution. Mater. Today Phys. 24, 100648 (2022).

    Article  CAS  Google Scholar 

  42. R. Tran, O.M. LØvvik, O. Tomic, and K. Berlan (2022) Lattice thermal conductivity of half-Heuslers with density functional theory and machine learning: enhancing predictivity by active sampling with principal component analysis. Comput. Mater. Sci. 202, 10938.

    Google Scholar 

  43. R. He, T. Zhu, P. Ying, J. Chen, L. Giebeler, U. Kühn, J.-C. Grossman, Y. Wang, and K. Nielsch, high-pressure-sintering-induced microstructural engineering for an ultimate phonon scattering of thermoelectric half-Heusler compounds. Small 17, 2102045 (2021).

    Article  CAS  Google Scholar 

  44. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj, K. K. Johari, B. Gahtori, and M. Saravanan, A., Dhar enhanced thermoelectric performance in p-type ZrCoSb based half-Heusler alloys employing nanostructuring and compositional modulation. J. Materiomics 5, 94 (2019).

    Article  Google Scholar 

  45. N.S. Chauhan, S. Bathula, A. Vishwakarma, R. Bhardwaj K. K. Johari, B. Gahtoria, and M. Saravanan, A., Dhar compositional tuning of ZrNiSn half-Heusler alloys: thermoelectric characteristics and performance analysis. J. Phys. Chem. Solids 123, 105 (2018).

    Article  Google Scholar 

  46. M. Mebrouki, T. Ouahrani, and Y.-Ö. Çiftci, Unraveling thermal and dynamical properties of the cubic BaVO3 perovskite from first-principles calculation. Int. J. Thermophys. 37, 1 (2016).

    Article  CAS  Google Scholar 

  47. M. Ould-Mohamed, K. Boukri, and T. Ouahrani, Structural, vibrational, electronic, thermodynamic and thermoelectric properties of CaCdSi half Heusler compound: a first-principles study. Mater. Today Commun. 33, 104668 (2022).

    Article  CAS  Google Scholar 

  48. L. Ali, T. Ouahrani, H. Ullah, R. Neffati, M.-W. Ashraf, M. Rani, S. Khan, G. Murtaza, A. Ali, and A. Laref, First-principles study on the electronic band profiles, structural, mechanical and thermoelectric properties of semiconducting MgSc\(_{2}\)Te\(_{4}\) and MgY\(_{2}\)Te\(_{4}\) Spinels. Eur. Phys. J. Plus. 137, 377 (2022).

    Article  CAS  Google Scholar 

  49. H.Y. Lv, W.J. Lu, D.F. Shao, and Y.P. Sun, Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B 90, 085433 (2014).

    Article  CAS  Google Scholar 

  50. G.-J. Snyder and E.-S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  51. W. Liu, X.-F. Tang, H. Li, J. Sharp, X.-Y. Zhao, and C. Uher, Optimized thermoelectric properties of Sb-doped Mg\(_{2(1+z)}\)Si\(_{0.5}\)ySn\(_{0.5}\)Sb\(_{y}\) through adjustment of the Mg content. Chem. Mater. 23, 5256 (2011).

    Article  CAS  Google Scholar 

  52. H. Muta, T. Kanemitsu, K. Kurosaki, and S. Yamanaka, Substitution effect on thermoelectric properties of ZrNiSn based half-Heusler compounds. Mater. Trans. 47(6), 1453 (2006).

    Article  CAS  Google Scholar 

  53. D.F. Zou, S.H. Xie, Y.Y. Liu, J.G. Lin, and J.Y. Li, Electronic structure and thermoelectric properties of half-Heusler Zr\(_{0.5}\)Hf\(_{0.5}\)NiSn by first-principles calculations. J. Appl. Phys. 113, 193705 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Djali or T. Ouahrani.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4108 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djali, F., Ouahrani, T., Hiadsi, S. et al. Stability and Thermoelectric Properties of FeZrTe Alloy. J. Electron. Mater. 52, 3931–3946 (2023). https://doi.org/10.1007/s11664-023-10369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10369-y

Keywords

Navigation