Skip to main content
Log in

Elevated Transition Temperature of VO2 Thin Films via Cr Doping: A Combined Electrical Transport and Electronic Structure Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

V1−xCrxO2 (0 ≤ x ≤ 0.3) (VCO) thin films were deposited onto r-sapphire substrates using a pulsed laser deposition method. The electronic structures of these compounds were investigated by x-ray photoemission spectroscopy (XPS), and the electrical transport measurements by four-probe electrical resistivity along with the Hall effect measurements. The XPS study shows that the valency of the Cr ions in the VCO films is 3 + and the V ions are in mixed states of 4 + and 5 + . From the resistivity-temperature measurements, the metal–insulator transition (MIT) temperature (TC) of Vanadium dioxide (VO2) increases significantly upon Cr doping, while the hysteresis width and resistivity follow a gradual decrease. These findings will pave the way for the usage of VO2 films in solar and electrical device applications where larger critical temperatures than pristine VO2 are required.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Jovic, A.J.E. Rettie, V.R. Singh, J. Zhou, B. Lamoureux, C. Mullins, H. Bluhm, J. Laverock, and K.E. Smith, A soft x-ray spectroscopic perspective of electron localization and transport in tungsten doped bismuth vanadate single crystals. Phys. Chem. Chem. Phys. 18, 31958 (2016).

    Article  CAS  Google Scholar 

  2. A. Kumari, A. Kumar, R. Dawn, J.B. Franklin, R. Vinjamuri, S.K. Sahoo, U.K. Goutam, V.K. Verma, R. Meena, A. Kandasami, S. Mahapatra, K. Kumar, A. Kumar, and V.R. Singh, Valence band structure of Cr doped VO2 thin films: a resonant photoelectron spectroscopy study. J. Alloys Compd. 895, 162620 (2021).

    Article  Google Scholar 

  3. Y. Yamazaki, T. Kataoka, V.R. Singh, A. Fujimori, F.H. Chang, D.J. Huang, H.J. Lin, C.T. Chen, K. Ishikawa, K. Zhang, and S. Kuroda, Effect of co-doping of donor and acceptor impurities in the ferromagnetic semiconductor Zn1xCrxTe studied by soft x-ray magnetic circular dichroism. J. Phys. Condens. Matter. 23, 176002 (2011).

    Article  CAS  Google Scholar 

  4. F.J. Morin, Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 3, 34 (1959).

    Article  CAS  Google Scholar 

  5. A. Cavalleri, Th. Dekorsy, H.H.W. Chong, J.C. Kieffer, and R.W. Schoeniein, Evidence for a structural driven insulator to metal transition in VO2: a view from the ultrafast time scale. Phys. Rev. B 70, 161102 (2004).

    Article  Google Scholar 

  6. Z. Wang, R. Zhang, X. Chen, Q. Fu, C. Li, S. Yuan, X. Zhao, and H. Tao, Nb doping effect in VO2 studied by investigations of magnetic behaviour. Ceram. Int. 44, 8623 (2018).

    Article  CAS  Google Scholar 

  7. Z. Li, Y. Guo, Z. Hu, J. Su, J. Zhao, J. Wu, Y. Zhao, C. Wu, and Y. Xie, Hydrogen treatment for superparamagnetic VO2 nanowires with large room-temperature magnetoresistance. Angew. Chem. Int. Ed. 55, 8018 (2016).

    Article  CAS  Google Scholar 

  8. Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. 34, 220 (2013).

    Article  CAS  Google Scholar 

  9. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, and Y. Long, Thermochromic VO2 for energy-efficient smart windows. Joule 2, 1707 (2018).

    Article  CAS  Google Scholar 

  10. T. Yajima, T. Nishimura, and A. Toriumi, Positive-bias gate-controlled metal–insulator transition in ultrathin VO2 channels with TiO2 gate dielectrics. Nat. Commun. 6, 10104 (2015).

    Article  CAS  Google Scholar 

  11. I.P. Radu, K. Martens, S. Mertens, C. Adelmann, X. Shi, H. Tielens, M. Schaekers, G. Pourtois, S. Van Elshocht, S. De Gendt, M. Heyns, and J.A. Kittl, Vanadium oxide as a memory material. ECS Trans. 35, 233 (2011).

    Article  CAS  Google Scholar 

  12. J.M. Baik, M.H. Kim, C. Larson, C.T. Yavuz, G.D. Stucky, A.M. Wodtke, and M. Moskovits, Pd-sensitized single vanadium oxide nanowires: highly responsive hydrogen sensing based on the metal–insulator transition. Nano Lett. 9, 3980 (2009).

    Article  CAS  Google Scholar 

  13. T.M. Rice, H. Launois, and L.P. Pouget, Comment on VO2: peierls or mott-hubbard? A view from band theory. Phys. Rev. Lett. 73, 3042 (1994).

    Article  CAS  Google Scholar 

  14. R.M. Wentzcovitch, W.W. Schulz, and P.B. Allen, VO2: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389 (1994).

    Article  CAS  Google Scholar 

  15. J.B. Goodenough, The two components of the crystallographic transition in VO2. J. Solid State Chem. 3, 490 (1971).

    Article  CAS  Google Scholar 

  16. J.M. Tomczak, F. Aryasetiawan, and S. Biermann, Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO2. Phys. Rev. B 78, 115103 (2008).

    Article  Google Scholar 

  17. T.C. Koethe, M.W. Haverkort, C. Schusler-Langeheine, F. Venturini, N.B. Brookes, O. Tjernberg, W. Reichelt, H.H. Hsieh, H.J. Lin, C.T. Chen, and L.H. Theng, Transfer of spectral weight and symmetry across the metal-insulator transition in VO2. Phys. Rev. Lett. 97, 116402 (2006).

    Article  CAS  Google Scholar 

  18. S. Biermann, A. Poteryaev, A.I. Lichtenstein, and A. Georges, Dynamical singlets and correlation-assisted peierls transition in VO2. Phys. Rev. Lett. 94, 026404 (2005).

    Article  CAS  Google Scholar 

  19. T.J. Hanlon, J.A. Coath, and M.A. Richardson, Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol–gel method. Thin Solid Films 436, 269 (2003).

    Article  CAS  Google Scholar 

  20. Z.P. Wu, A. Miyashita, S. Yamamoto, H. Abe, I. Nashiyama, K. Narumi, and H. Naramoto, Molybdenum substitutional doping and its effects on phase transition properties in single crystalline vanadium dioxide thin film. J. Appl. Phys. 86, 5311 (1999).

    Article  CAS  Google Scholar 

  21. P. Jin and S. Tanemura, V1−xMoxO2 thermochromic films deposited by reactive magnetron sputtering. Thin Solid Films 281, 239 (1996).

    Article  Google Scholar 

  22. H. Takami, K. Kawatani, T. Kanki, and H. Tanaka, High temperature-coefficient of resistance at room temperature in W-doped VO2 thin films on Al2O3 substrate and their thickness dependence. Jpn. J. Appl. Phys. 50, 055804 (2011).

    Article  Google Scholar 

  23. K. Shibuya, M. Kawasaki, and Y. Tokura, Metal-insulator transition in epitaxial V1xWXO(0≤ x ≤0.33) thin films. Appl. Phys. Lett. 96, 022102 (2010).

    Article  Google Scholar 

  24. T.D. Manning, I.P. Parkin, C. Blackman, and U. Qureshi, APCVD of thermochromic vanadium dioxide thin films-solid solutions V2−xMxO2 (M = Mo, Nb) or composites VO2: SnO2. J. Mater. Chem. 15, 4560 (2005).

    Article  CAS  Google Scholar 

  25. C.J. Patridge, L. Whittaker, B. Ravel, and S. Banerjee, Elucidating the influence of local structure perturbations on the metal-insulator transitions of V1–xMoxO2 nanowires: mechanistic insights from an x-ray absorption spectroscopy study. J. Phys. Chem. C 116, 3728 (2012).

    Article  CAS  Google Scholar 

  26. S.Q. Xu, H.P. Ma, S.X. Dai, and Z.H. Jiang, Study on optical and electrical switching properties and phase transition mechanism of Mo6+-doped vanadium dioxide thin films. J. Mater. Sci. 39, 489 (2004).

    Article  CAS  Google Scholar 

  27. A. Paone, R. Sanjines, P. Jeanneret, H.J. Whitlow, E. Guibert, G. Guibert, F. Bussy, J.-L. Scartezzini, and A. Scheuler, Influence of doping in thermochromic V1−xWxO2 and V1−xAlxO2 thin films: twice improved doping efficiency in V1−xWxO2. J. Alloys Compd. 621, 206 (2015).

    Article  CAS  Google Scholar 

  28. A. Paone, M. Geiger, R. Sanjines, and A. Scheuler, Thermal solar collector with VO2 absorber coating and V1−xWxO2 thermochromic glazing–Temperature matching and triggering. Sol. Energy 110, 151 (2014).

    Article  CAS  Google Scholar 

  29. W.A. Vitale, E.A. Casu, A. Biswas, T. Rosca, C. Alper, A. Krammer, G.V. Luong, Q.-T. Zhao, S. Mantl, A. Scheuler, and A.M. Ionescu, A steep-slope transistor combining phase-change and band-to-band-tunneling to achieve a sub-unity body factor. Sci. Rep. 7, 355 (2017).

    Article  Google Scholar 

  30. W.A. Vitale, L. Petit, C.F. Moldovan, M. Fernandez-Bolanos, A. Paone, A. Schuler, and A.M. Ionescu, Electrothermal actuation of vanadium dioxide for tunable capacitors and microwave filters with integrated microheaters. Sens. Actuators A 241, 245 (2016).

    Article  CAS  Google Scholar 

  31. H. Futaki and M. Aoki, Effects of various doping elements on the transition temperature of vanadium oxide semiconductors. Jpn. J. Appl. Phys. Part-1 8, 1008 (1969).

    Article  CAS  Google Scholar 

  32. J.B. MacChesney and H.J. Guggenheim, Growth and electrical properties of vanadium dioxide single crystals containing selected impurity ions. J. Phys. Chem. Solids 30, 225 (1969).

    Article  CAS  Google Scholar 

  33. I. Kitahiro and A. Watanabe, Shif of transition temperature of vanadium dioxide crystals. Jpn. J. Appl. Phys. Part 1 6, 1023 (1967).

    Article  CAS  Google Scholar 

  34. B. Chen, D. Yang, P.A. Charpentier, and M. Zeman, Al3+-doped vanadium dioxide thin films deposited by PLD. Sol. Energy Mater. Sol. Cells 93, 1550 (2009).

    Article  CAS  Google Scholar 

  35. T.E. Phillips, R.A. Murphy, and T.O. Poehler, Electrical studies of reactively sputtered Fe-doped VO2 thin films. Mater. Res. Bull. 22, 1113 (1987).

    Article  CAS  Google Scholar 

  36. B.L. Brown, M. Lee, P.G. Clem, C.D. Nordquist, T.S. Jordan, S.L. Wolfley, D. Leonhardt, C. Edney, and J.A. Custer, Electrical and optical characterization of the metal–insulator transition temperature in Cr-doped VO2 thin films. J. Appl. Phys. 113, 173704 (2013).

    Article  Google Scholar 

  37. Z. Zou, Z. Zhang, J. Xu, Z. Yu, M. Cheng, R. Xiong, Z. Lu, Y. Liu, and J. Shi, Thermochromic, threshold switching, and optical properties of Cr-doped VO2 thin films. J. Alloys Compd. 806, 310 (2019).

    Article  CAS  Google Scholar 

  38. M. Zzaman, J.B. Franklin, R. Dawn, V.K. Verma, R. Shahid, M.K. Gupta, K. Amemiya, Y. Miura, and V.R. Singh, Effect of Cr-substitution on vanadium dioxide thin films studied by soft x-ray magnetic circular dichroism. J. Alloys Compd. 918, 165515 (2022).

    Article  CAS  Google Scholar 

  39. G. Greczynski and L. Hultman, A step-by-step guide to perform x-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022).

    Article  CAS  Google Scholar 

  40. G. Greczynski and L. Hultman, X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591 (2020).

    Article  CAS  Google Scholar 

  41. J. Jagannath, U.K. Goutam, R.K. Sharma, J. Singh, K. Dutta, U.S. Sule, R. Pradeep, and S.C. Gadkari, HAXPES beamline PES-BL14 at the Indus-2 synchrotron radiation source. J. Synchrotron Rad. 25, 1541 (2018).

    Article  CAS  Google Scholar 

  42. V.R. Singh, V. Jovic, I. Valmianski, J.G. Ramirez, B. Lamoureux, I.K. Schuller, and K.E. Smith, Irreversible metal-insulator transition in thin film VO2 induced by soft x-ray irradiation. Appl. Phys. Lett. 111, 241605 (2017).

    Article  Google Scholar 

  43. J. Laverock, A.R.H. Preston, D. Newby Jr., K.E. Smith, S. Sallis, L.F.J. Piper, S. Kittiwatanakul, J.W. Lu, S.A. Wolf, M. Leandersson, and T. Balasubramanian, Photoemission evidence for crossover from Peierls-like to Mott-like transition in highly strained VO2. Phys. Rev. B. 86, 195124 (2012).

    Article  Google Scholar 

  44. D. Newby Jr., J. Kuyyalil, J. Laverock, K.F. Ludwig, Y. Yu, J. Davis, S. Gopalan, U.B. Pal, S. Basu, and K.E. Smith, Surface evolution of lanthanum strontium cobalt ferrite thin films at low temperatures. Thin Solid Films 589, 655 (2015).

    Article  CAS  Google Scholar 

  45. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135, 167 (2004).

    Article  CAS  Google Scholar 

  46. E. Hryha, E. Rutqvist, and L. Nyborg, Stoichiometric vanadium oxides studied by XPS. Surf. Interface Anal. 44, 1022 (2012).

    Article  CAS  Google Scholar 

  47. Z.T. Zhang, Y.F. Gao, L.T. Kang, J. Du, and H.J. Luo, Effects of a TiO2 buffer layer on solution-deposited VO2 films: enhanced oxidization durability. J. Phys. Chem. C 114, 22214 (2010).

    Article  CAS  Google Scholar 

  48. J. Mendialdua, R. Casanova, and Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3. J. Electron Spectrosc. Relat. Phenom. 71, 249 (1995).

    Article  CAS  Google Scholar 

  49. S. Fan, L. Fan, Q. Li, J. Liu, and B. Ye, The identification of defect structures for oxygen pressure dependent VO2 crystal films. Appl. Surf. Sci. 321, 464 (2014).

    Article  CAS  Google Scholar 

  50. M.J. Powell, I.J. Godfrey, R. Quesada-Cabrera, D. Malarde, D. Teixeira, H. Emerich, R.G. Palgrave, C.J. Carmalt, I.P. Parkin, and G. Sankar, Qualitative XANES and XPS analysis of substrate effects in VO2 Thin films: a route to improving chemical vapor deposition synthetic methods. J. Phys. Chem. C 121, 20345 (2017).

    Article  CAS  Google Scholar 

  51. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, and G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979) p. 104.

  52. J.A.J. Rupp, M. Querr, A. Kindsmuller, M.P. Besland, E. Janod, R. Dittmann, R. Waser, and D.J. Wouters, Different threshold and bipolar resistive switching mechanisms in reactively sputtered amorphous undoped and Cr-doped vanadium oxide thin films. J. Appl. Phys. 123, 044502 (2018).

    Article  Google Scholar 

  53. M. Kubin, M. Guo, M. Ekimova, E. Källman, J. Kern, V.K. Yachandra, J. Yano, E.T.J. Nibbering, M. Lundberg, and P. Wernet, Cr L-edge x-ray absorption spectroscopy of CrIII(acac)3 in solution with measured and calculated absolute absorption cross sections. J. Phys. Chem. B. 122, 7375 (2018).

    Article  CAS  Google Scholar 

  54. Y.F. Wu, L.L. Fan, Q.H. Liu, S. Chen, W.F. Huang, F.H. Chen, G.M. Liao, C.W. Zou, and Z.Y. Wu, Decoupling the lattice distortion and charge doping effects on the phase transition behavior of VO2 by titanium (Ti4+) doping. Sci. Rep. 5, 9328 (2015).

    Article  CAS  Google Scholar 

  55. C. Sun, L. Yan, B. Yue, H. Liu, and Y. Gao, The modulation of metal–insulator transition temperature of vanadium dioxide: a density functional theory study. J. Mater Chem C. 2, 9283 (2014).

    Article  CAS  Google Scholar 

  56. L.A. Ladd and W. Paul, Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature. Solid State Commun. 7, 425 (1969).

    Article  CAS  Google Scholar 

  57. P.J. Hood and J.F. Denatale, Millimeter-wave dielectric properties of epitaxial vanadium dioxide thin films. J. Appl. Phys. 70, 376 (1991).

    Article  CAS  Google Scholar 

  58. P. Jin, K. Yoshimura, and S. Tanemura, Dependence of microstructure and thermochromism on substrate temperature for sputter-deposited VO2 epitaxial films. J. Vac. Sci. Technol. A 15, 1113 (1997).

    Article  CAS  Google Scholar 

  59. H. Zhang, Z. Wu, D. Yan, X. Xu, and Y. Jiang, Tunable hysteresis in metal-insulator transition of nanostructured vanadium oxide thin films deposited by reactive direct current magnetron sputtering. Thin Solid Films 552, 218 (2014).

    Article  CAS  Google Scholar 

  60. J.Y. Suh, R. Lopez, L.C. Feldman, and R.F. Haglund, Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J. Appl. Phys. 96, 1209 (2004).

    Article  CAS  Google Scholar 

  61. R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman, and R.F. Haglund, Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B 65, 224113 (2002).

    Article  Google Scholar 

  62. J. Du, Y. Gao, H. Luo, L. Kang, Z. Zhang, Z. Chen, and C. Cao, Significant changes in phase-transition hysteresis for Ti-doped VO2 films prepared by polymer-assisted deposition. Sol. Energy Mater. Sol. Cells 95, 469 (2011).

    Article  CAS  Google Scholar 

  63. J. Narayan and V.M. Bhosle, Phase transition and critical issues in structure-property correlations of vanadium oxide. J. Appl. Phys. 100, 103524 (2006).

    Article  Google Scholar 

  64. L. Zhang, H.J. Gardner, X.G. Chen, V.R. Singh, and X. Hong, Strain induced modulation of the correlated transport in epitaxial Sm0.5Nd0.5NiO3 thin films. J. Phys. Condens. Matter. 27, 132201 (2015).

    Article  CAS  Google Scholar 

  65. V.R. Singh, L. Zhang, A. Rajapitamahuni, N. Devries, and X. Hong, nonlinear transport in nanoscale phase separated colossal magnetoresistive oxide thin films. J. Appl. Phys. 116, 033914 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Shahrukh from the Central University of Kashmir, Mr. Pushp Raj, and Mr. Akashdeep from the Central University of South Bihar for their technical support and help. VRS thanks IUAC Delhi (File number: IUAC/XIII.7/UFR-66327) and SERB Delhi (File No: CRG/2022/002052) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Shahid or V. R. Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zzaman, M., Dawn, R., Franklin, J.B. et al. Elevated Transition Temperature of VO2 Thin Films via Cr Doping: A Combined Electrical Transport and Electronic Structure Study. J. Electron. Mater. 52, 3818–3830 (2023). https://doi.org/10.1007/s11664-023-10359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10359-0

Keywords

Navigation