Skip to main content

Advertisement

Log in

Recent Advances of Metal Groups and Their Heterostructures as Catalytic Materials for Lithium-Sulfur Battery Cathodes

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries have an extremely high theoretical capacity and energy density and are considered to be among the highly promising energy storage systems for the next generation. However, the slow redox kinetics of sulfur and the "shuttle effect" caused by lithium polysulfides (LiPSs) result in batteries with extremely low coulombic efficiency and poor cycling stability, which severely hinders the commercialization of Li-S batteries. Up to date, numerous works have shown that the introduction of polar catalytic materials into the cathode is an effective strategy to improve battery performance, especially metal-based compounds, which not only strongly anchor LiPSs and suppress the shuttle effect, but also accelerate the redox process of sulfur. Theoretical calculations, especially the most widely applicable density functional theory (DFT) calculation, play an indispensable role in understanding the anchoring and conversion behavior of LiPSs on substrates, and it can predict the potential performance of materials and provide strategies for the rational design of LiPS anchoring materials. Based on this perspective, this paper highlights the DFT work conducted on this topic for metal compound materials, and reviews their recent progress as catalytic materials for Li-S battery cathodes, including metal oxides, metal sulfides, metal selenides, metal carbides, metal nitrides, other metal compounds and the composed heterostructures. Finally, we summarize the research directions and challenges of polar material applications and put forward personal suggestions, aiming to provide guidance for the wider application of metal compounds in the Li-S battery field.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data will be made available on request from the authors.

References

  1. W.G. Lim, S. Kim, C. Jo, and J. Lee, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746 (2019).

    Article  CAS  Google Scholar 

  2. Y. Zhao, Y. Ye, F. Wu, Y. Li, L. Li, and R. Chen, Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 31, e1806532 (2019).

    Article  Google Scholar 

  3. M. Wang and Y. Tang, A review on the features and progress of dual-ion batteries. Adv. Energy Mater. 8, 1703320 (2018).

    Article  Google Scholar 

  4. H. Gao, N. Deng, G. Wang, X. Wang, Y. Liu, L. Zhang, Y. Liang, J. Yan, B. Cheng, and W. Kang, Overview of the latest developments and perspectives about noncarbon sulfur host materials for high performance lithium-sulfur batteries. Energy Fuels. 36, 7284 (2022).

    Article  CAS  Google Scholar 

  5. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).

    Article  CAS  Google Scholar 

  6. A. Bhargav, J. He, A. Gupta, and A. Manthiram, lithium-sulfur batteries: attaining the critical metrics. Joule. 4, 285 (2020).

    Article  Google Scholar 

  7. M. Zhao, B.Q. Li, H.J. Peng, H. Yuan, J.Y. Wei, and J.Q. Huang, Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities. Angew. Chem. Int. Ed. 59, 12636 (2020).

    Article  CAS  Google Scholar 

  8. J. Li, Y. Qu, C. Chen, X. Zhang, and M. Shao, Theoretical investigation on lithium polysulfide adsorption and conversion for high-performance Li-S batteries. Nanoscale 13, 15 (2021).

    Article  CAS  Google Scholar 

  9. A. Manthiram, Y. Fu, S.H. Chung, C. Zu, and Y.S. Su, Rechargeable lithium-sulfur batteries. Chem. Rev. 114, 11751 (2014).

    Article  CAS  Google Scholar 

  10. T. Maihom, J. Sittiwong, M. Probst, and J. Limtrakul, Understanding the interactions between lithium polysulfides and anchoring materials in advanced lithium-sulfur batteries using density functional theory. Phys. Chem. Chem. Phys. 24, 8604 (2022).

    Article  CAS  Google Scholar 

  11. S. Huang, Y. Wang, J. Hu, Y.V. Lim, D. Kong, Y. Zheng, M. Ding, M.E. Pam, and H.Y. Yang, Mechanism investigation of high-performance Li-polysulfide batteries enabled by tungsten disulfide nanopetals. ACS Nano 12, 9504 (2018).

    Article  CAS  Google Scholar 

  12. F. Zhao, Y. Li, and W. Feng, Recent advances in applying vulcanization/inverse vulcanization methods to achieve high-performance sulfur-containing polymer cathode materials for Li-S batteries. Small Methods 2, 1800156 (2018).

    Article  Google Scholar 

  13. R. Kumar, J. Liu, J.-Y. Hwang, and Y.-K. Sun, Recent research trends in Li-S batteries. J. Mater. Chem. A 6, 11582 (2018).

    Article  CAS  Google Scholar 

  14. W. Wang, K. Xi, B. Li, H. Li, S. Liu, J. Wang, H. Zhao, H. Li, A.M. Abdelkader, X. Gao, and G. Li, A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium-sulfur batteries. Adv. Energy Mater. 12, 2200160 (2022).

    Article  CAS  Google Scholar 

  15. S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, and L.A. Archer, Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 137, 12143 (2015).

    Article  CAS  Google Scholar 

  16. M.L.Y. Wang, L. Xu, T. Tang, Z. Ali, X. Huang, Y. Hou, and S. Zhang, Polar and conductive iron carbide@N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries. Chem. Eng. J. 358, 962 (2018).

    Article  Google Scholar 

  17. C. Dai, L. Hu, X. Li, Q. Xu, R. Wang, H. Liu, H. Chen, S.-J. Bao, Y. Chen, G. Henkelman, C.M. Li, and M. Xu, Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy 53, 354 (2018).

    Article  CAS  Google Scholar 

  18. A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  19. Y.S. Su and A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 3, 1166 (2012).

    Article  Google Scholar 

  20. W. Lv, Z. Li, Y. Deng, Q.-H. Yang, and F. Kang, Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107 (2016).

    Article  Google Scholar 

  21. Y. Lu, S. Gu, J. Guo, K. Rui, C. Chen, S. Zhang, J. Jin, J. Yang, and Z. Wen, Sulfonic groups originated dual-functional interlayer for high performance lithium-sulfur battery. ACS Appl. Mater. Interfaces 17, 14878 (2017).

    Article  Google Scholar 

  22. Y. Cui, Q. Zhang, J. Wu, X. Liang, A.P. Baker, D. Qu, H. Zhang, H. Zhang, and X. Zhang, Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries. J. Power Sources 378, 40 (2018).

    Article  CAS  Google Scholar 

  23. X. Chen, T. Hou, K.A. Persson, and Q. Zhang, Combining theory and experiment in lithium-sulfur batteries: current progress and future perspectives. Mater. Today. 22, 142 (2019).

    Article  CAS  Google Scholar 

  24. J. Deng, J. Guo, J. Li, M. Zeng, and D. Gong, Improving the electrochemical property of Li-S batteries by using CoS2 as substrate materials. Ceram. Int. 44, 17340 (2018).

    Article  CAS  Google Scholar 

  25. Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi, J. Han, L. Wang, and S. Zhang, Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li-S battery. Nano Energy 89, 106331 (2021).

    Article  CAS  Google Scholar 

  26. Y. Mi, W. Liu, X. Li, J. Zhuang, H. Zhou, and H. Wang, High-performance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res. 10, 3698 (2017).

    Article  CAS  Google Scholar 

  27. X. Mao, L. Zhu, and A. Fu, Arsenene, antimonene and bismuthene as anchoring materials for lithium-sulfur batteries: a computational study. Int. J. Quantum. Chem. 121, e26661 (2021).

    Article  CAS  Google Scholar 

  28. A. Mammoottil Abraham, S.P. Kammampata, S. Ponnurangam, and V. Thangadurai, Efficient synthesis and characterization of robust MoS2 and S cathode for advanced Li-S battery: combined experimental and theoretical studies. ACS Appl. Mater. Interfaces 11, 35729 (2019).

    Article  CAS  Google Scholar 

  29. Z. Shi, W. Feng, X. Wang, M. Li, C. Song, and L. Chen, Catalytic cobalt phosphide Co2P/carbon nanotube nanocomposite as host material for high performance lithium-sulfur battery cathode. J. Alloys Compd. 851, 156289 (2021).

    Article  CAS  Google Scholar 

  30. S. Gu, B. Liu, Y. Jiang, H. Li, Y. Wang, Y. Gao, Y. Ren, and G. Zhou, Rational design of dual catalysts towards efficient polysulfides conversion for high performance Li-S batteries. J. Power Sources 545, 231950 (2022).

    Article  CAS  Google Scholar 

  31. Y. Qi, N. Li, K. Zhang, Y. Yang, Z. Ren, J. You, Q. Hou, C. Shen, T. Jin, Z. Peng, and K. Xie, Dynamic liquid metal catalysts for boosted lithium polysulfides redox reaction. Adv. Mater. 66, e2204810 (2022).

    Article  Google Scholar 

  32. Y. Gong, W. Ma, Z. Xu, and Y. Wang, Understanding the interaction of N-doped graphene and sulfur compounds in a lithium-sulfur battery: a density functional theory investigation. New J. Chem. 46, 12300 (2022).

    Article  CAS  Google Scholar 

  33. Y. Zhang, Y. Zhao, Z. Bakenov, M.-R. Babaa, A. Konarov, C. Ding, and P. Chen, Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium-sulfur batteries. J. Electrochem. Soc. 160, A1194 (2013).

    Article  CAS  Google Scholar 

  34. M.A. Weret, C.-F.J. Kuo, W.-N. Su, T.S. Zeleke, C.-J. Huang, N.A. Sahalie, T.A. Zegeye, Z.T. Wondimkun, F.W. Fenta, B.A. Jote, M.-C. Tsai, and B.J. Hwang, Fibrous organosulfur cathode materials with high bonded sulfur for high-performance lithium-sulfur batteries. J. Power Sources 541, 231693 (2022).

    Article  CAS  Google Scholar 

  35. Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, and P. Chen, Ternary sulfur polyacrylonitrile Mg0.6Ni0.4O composite cathodes for high performance lithium-sulfur batteries. J. Mater. Chem. A. 1, 295 (2013).

    Article  CAS  Google Scholar 

  36. Z. Chang, H. Dou, B. Ding, J. Wang, Y. Wang, X. Hao, and D.R. MacFarlane, Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries. J. Mater. Chem. A. 5, 250 (2017).

    Article  CAS  Google Scholar 

  37. B. Jiang, Y. Qiu, D. Tian, Y. Zhang, X. Song, C. Zhao, M. Wang, X. Sun, H. Huang, C. Zhao, H. Zhou, A. Chen, L. Fan, and N. Zhang, Crystal facet engineering induced active tin dioxide nanocatalysts for highly stable lithium-sulfur batteries. Adv. Energy Mater. 11, 2102995 (2021).

    Article  CAS  Google Scholar 

  38. S. Evers, T. Yim, and L.F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery. J. Phys. Chem. C 116, 19653 (2012).

    Article  CAS  Google Scholar 

  39. Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, and Y. Cui, Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013).

    Article  Google Scholar 

  40. H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia, Z.-Y. Hu, G. Guo, G. Cao, and W. Zhang, Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries. J. Mater. Chem. A. 7, 10346 (2019).

    Article  CAS  Google Scholar 

  41. Y. Yu, M. Yan, W.-D. Dong, L. Wu, Y.-W. Tian, Z. Deng, L.-H. Chen, T. Hasan, Y. Li, and B.-L. Su, Optimizing inner voids in yolk-shell TiO2 nanostructure for high-performance and ultralong-life lithium-sulfur batteries. Chem. Eng. J. 417, 129241 (2021).

    Article  CAS  Google Scholar 

  42. N. Liu, H. Ma, L. Wang, Y. Zhao, Z. Bakenov, and X. Wang, Dealloying-derived nanoporous deficient titanium oxide as high-performance bifunctional sulfur host-catalysis material in lithium-sulfur battery. J. Mater. Sci. Technol. 84, 124 (2021).

    Article  CAS  Google Scholar 

  43. J. Wang, and W.Q. Han, A review of heteroatom doped materials for advanced lithium-sulfur batteries. Adv. Funct. Mater. 32, 2107166 (2021).

    Article  Google Scholar 

  44. X. Ren, Z. Liu, M. Zhang, D. Li, S. Yuan, and C. Lu, Review of cathode in advanced Li-S batteries: the effect of doping atoms at micro levels. Chem. Electro Chem. 8, 3457 (2021).

    CAS  Google Scholar 

  45. W. Wang, Y. Zhao, Y. Zhang, J. Wang, G. Cui, M. Li, Z. Bakenov, and X. Wang, Defect-rich multishelled Fe-doped Co3O4 hollow microspheres with multiple spatial confinements to facilitate catalytic conversion of polysulfides for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 12, 12763 (2020).

    Article  CAS  Google Scholar 

  46. Y. Tian, X. Zhang, Y. Zhang, J. Li, A. Jia, G. Liu, and Z. Bakenov, Cobalt-doped oxygen-deficient titanium dioxide coated by carbon layer as high-performance sulfur host for Li/S batteries. J. Alloys Compd. 861, 157969 (2021).

    Article  CAS  Google Scholar 

  47. W. Dong, L. Meng, X. Hong, S. Liu, D. Shen, Y. Xia, and S. Yang, MnO2/rGO/CNTs framework as a sulfur host for high-performance Li-S batteries. Molecules 25, 8 (2020).

    Article  Google Scholar 

  48. T. Zhou, Z. Shen, Y. Wu, T. Han, M. Zhu, X. Qiao, Y. Zhu, H. Zhang, and J. Liu, A yolk-shell Fe3O4@void@carbon nanochain as shuttle effect suppressive and volume-change accommodating sulfur host for long-life lithium-sulfur batteries. Nanoscale 13, 7744 (2021).

    Article  CAS  Google Scholar 

  49. D. Wang, S. Zhao, F. Li, L. He, Y. Zhao, H. Zhao, Y. Liu, Y. Wei, and G. Chen, Insight into the anchoring and catalytic effects of VO2 and VS2 nanosheets as sulfur cathode hosts for Li-S batteries. Chemsuschem 12, 4671 (2019).

    Article  CAS  Google Scholar 

  50. Q. Yun, L. Li, Z. Hu, Q. Lu, B. Chen, and H. Zhang, Layered transition metal dichalcogenide-based nanomaterials for electrochemical energy storage. Adv. Mater. 32, e1903826 (2020).

    Article  Google Scholar 

  51. K. Xi, D. He, C. Harris, Y. Wang, C. Lai, H. Li, P.R. Coxon, S. Ding, C. Wang, and R.V. Kumar, Enhanced sulfur transformation by multifunctional FeS2/FeS/S composites for high-volumetric capacity cathodes in lithium-sulfur batteries. Adv. Sci. 6, 1800815 (2019).

    Article  Google Scholar 

  52. F. Chen, C. Gao, H. Li, J. Hou, and D. Jiang, FeS monolayer as a potential anchoring material for lithium-sulfur batteries: a theoretical study. Surf. Sci. 707, 121818 (2021).

    Article  CAS  Google Scholar 

  53. R. Jayan and M.M. Islam, First-principles investigation of the anchoring behavior of pristine and defect-engineered tungsten disulfide for lithium-sulfur batteries. J. Phys. Chem. C 124, 27323 (2020).

    Article  CAS  Google Scholar 

  54. W. Cui, H. Li, Y. Liu, Q. Cai, and J. Zhao, Capture and catalytic conversion of lithium polysulfides by metal-doped MoS2 monolayers for lithium-sulfur batteries: a computational study. Phys. E Low Dimens. Syst. Nanostruct. 130, 114715 (2021).

    Article  CAS  Google Scholar 

  55. K. Mahankali, S.V. Gottumukkala, N. Masurkar, N.K. Thangavel, R. Jayan, A. Sawas, S. Nagarajan, M.M. Islam, and L.M.R. Arava, Unveiling the electrocatalytic activity of 1T’-MoSe2 on lithium-polysulfide conversion reactions. ACS Appl. Mater. Interfaces 14, 24486 (2022).

    Article  CAS  Google Scholar 

  56. D. Voiry, R. Fullon, J. Yang, E.S.C. de Carvalho Castro, R. Kappera, I. Bozkurt, D. Kaplan, M.J. Lagos, P.E. Batson, G. Gupta, A.D. Mohite, L. Dong, D. Er, V.B. Shenoy, T. Asefa, M. Chhowalla, The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003 (2016).

  57. H. Li, A.W. Contryman, X. Qian, S.M. Ardakani, Y. Gong, X. Wang, J.M. Weisse, C.H. Lee, J. Zhao, P.M. Ajayan, J. Li, H.C. Manoharan, and X. Zheng, Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    Article  CAS  Google Scholar 

  58. W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma, X. Wang, W. Liu, Z. Li, Q.H. Yang, and W. Lv, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries. ACS Nano 15, 7491 (2021).

    Article  CAS  Google Scholar 

  59. C. Ye, L. Zhang, C. Guo, D. Li, A. Vasileff, H. Wang, and S.Z. Qiao, A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries. Adv. Funct. Mater. 27, 1702524 (2017).

    Article  Google Scholar 

  60. J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, and A. Manthiram, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ. Sci. 12, 344 (2019).

    Article  CAS  Google Scholar 

  61. J. Liu, S. Xiao, L. Chang, L. Lai, R. Wu, Y. Xiang, X. Liu, and J. Song Chen, Regulating the d band in WS2@NC hierarchical nanospheres for efficient lithium polysulfide conversion in lithium-sulfur batteries. J. Energy Chem. 56, 343 (2021).

    Article  CAS  Google Scholar 

  62. H. Liu, B. Chen, H. Qin, N. Wang, E. Liu, C. Shi, and N. Zhao, ReS2 nanosheets anchored on rGO as an efficient polysulfides immobilizer and electrocatalyst for Li-S batteries. Appl. Surf. Sci. 505, 144586 (2020).

    Article  CAS  Google Scholar 

  63. T. Tang, T. Zhang, L. Zhao, B. Zhang, W. Li, J. Xu, L. Zhang, H. Qiu, and Y. Hou, Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li-S batteries. Mater. Chem. Front. 4, 1483 (2020).

    Article  CAS  Google Scholar 

  64. B. Yuan, D. Hua, X. Gu, Y. Shen, L.-C. Xu, X. Li, B. Zheng, J. Wu, W. Zhang, S. Li, and F. Huo, Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li-S batteries. J. Energy Chem. 48, 128 (2020).

    Article  Google Scholar 

  65. W. Xiao, Q. He, and Y. Zhao, Virtual screening of two-dimensional selenides and transition metal doped SnSe for lithium-sulfur batteries: a first-principles study. Appl. Surf. Sci. 570, 151213 (2021).

    Article  CAS  Google Scholar 

  66. C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li, X. Yang, J. Arbiol, Y. Zhou, J.R. Morante, and A. Cabot, Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 29, 1903842 (2019).

    Article  Google Scholar 

  67. J. Bao, X.-Y. Yue, R.-J. Luo, and Y.-N. Zhou, Cubic MnSe2 microcubes enabling high-performance sulfur cathodes for lithium-sulfur batteries. Sustain. Energy Fuels 5, 5699 (2021).

    Article  CAS  Google Scholar 

  68. L. Song, M. Zhang, X. Cao, and J. Guo, VX (X = S, Se) as anchoring materials for lithium-sulfur batteries—a theoretical study. Comput. Mater. Sci. 210, 111040 (2022).

    Article  Google Scholar 

  69. L. Chen, Y. Xu, G. Cao, H.M.K. Sari, R. Duan, J. Wang, C. Xie, W. Li, and X. Li, Bifunctional catalytic effect of CoSe2 for lithium-sulfur batteries: single doping versus dual doping. Adv. Funct. Mater. 32, 2107838 (2021).

    Article  Google Scholar 

  70. Y. Yao, C. Chang, H. Sun, D. Guo, R. Li, X. Pu, and J. Zhai, Hollow Ni3Se4 with high tap density as a carbon-free sulfur immobilizer to realize high volumetric and gravimetric capacity for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 22, 25267 (2022).

    Article  Google Scholar 

  71. W. Sun, Y. Li, S. Liu, C. Liu, X. Tan, and K. Xie, Mechanism investigation of iron selenide as polysulfide mediator for long-life lithium-sulfur batteries. Chem. Eng. J. 416, 129166 (2021).

    Article  CAS  Google Scholar 

  72. W.-M. Zhao, J.-D. Shen, X.-J. Xu, W.-X. He, L. Liu, Z.-H. Chen, and J. Liu, Functional catalysts for polysulfide conversion in Li-S batteries: from micro/nanoscale to single atom. Rare Met. 41, 1080 (2022).

    Article  CAS  Google Scholar 

  73. G. Liu, C. Yuan, P. Zeng, C. Cheng, T. Yan, K. Dai, J. Mao, and L. Zhang, Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries. J. Energy Chem. 67, 73 (2022).

    Article  CAS  Google Scholar 

  74. J. Zheng, C. Guan, H. Li, Y. Xie, S. Li, J. Hu, K. Zhang, B. Hong, Y. Lai, J. Li, and Z. Zhang, VC@NCNTs: bidirectional catalyst for fast charging lithium-sulfur batteries. Chem. Eng. J. 442, 135940 (2022).

    Article  CAS  Google Scholar 

  75. Y. Wu, X. Zhu, P. Li, T. Zhang, M. Li, J. Deng, Y. Huang, P. Ding, S. Wang, R. Zhang, J. Lu, G. Lu, Y. Li, and Y. Li, Ultradispersed WxC nanoparticles enable fast polysulfide interconversion for high-performance Li-S batteries. Nano Energy 59, 636 (2019).

    Article  CAS  Google Scholar 

  76. W. Li, K. Chen, Q. Xu, X. Li, Q. Zhang, J. Weng, and J. Xu, Mo2C/C hierarchical double-shelled hollow spheres as sulfur host for advanced Li-S batteries. Angew. Chem. Int. Ed. 60, 21512 (2021).

    Article  CAS  Google Scholar 

  77. X. Hu, K. Shen, C. Han, X. Cao, J. Guo, and M. Zhang, Catalytic Mo2C decorated hollow mesoporous carbon spheres as sulfur host for lithium-sulfur batteries with high sulfur loading. J. Solid State Chem. 312, 123187 (2022).

    Article  CAS  Google Scholar 

  78. Y. Zhang, C. Ma, W. He, C. Zhang, L. Zhou, G. Wang, and W. Wei, MXene and MXene-based materials for lithium-sulfur batteries. Prog. Nat. Sci. 31, 501 (2021).

    Article  CAS  Google Scholar 

  79. N. Li, Q. Meng, X. Zhu, Z. Li, J. Ma, C. Huang, J. Song, and J. Fan, Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: a DFT study. Nanoscale 11, 8485 (2019).

    Article  CAS  Google Scholar 

  80. X. Liang, A. Garsuch, and L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 3907 (2015).

    Article  CAS  Google Scholar 

  81. Q. Zhang, X. Zhang, Y. Xiao, C. Li, H.H. Tan, J. Liu, and Y. Wu, Theoretical insights into the favorable functionalized Ti2C-based MXenes for lithium-sulfur batteries. ACS Omega 5, 29272 (2020).

    Article  CAS  Google Scholar 

  82. C. Ling, K. Ma, J. Xiao, L. Xu, X. Dai, and Z. Wang, The anchoring effect of Nb-based MXenes lithium-sulfur batteries: a first-principles study. Micro Nanostruct. 168, 207303 (2022).

    Article  CAS  Google Scholar 

  83. L. Gao, T. Sheng, M. Wang, H. Ren, S.W. Joo, and J. Huang, Titanium nitride nanocrystals anchored evenly on interconnected carbon nanosheets with effective chemisorption and catalytic effects towards polysulfides for long-life lithium−sulfur batteries. Electrochim. Acta 395, 139208 (2021).

    Article  CAS  Google Scholar 

  84. C. Shang, B. Wei, X. Zhang, L. Shui, X. Wang, and G. Zhou, Vanadium nitride-decorated lotus root-like NCNFs as 3D current collector for Li-S batteries. Mater. Lett. 236, 240 (2019).

    Article  CAS  Google Scholar 

  85. T.T. Nguyen, J. Balamurugan, H.W. Go, Q.P. Ngo, N.H. Kim, and J.H. Lee, Dual-functional Co5.47N/Fe3N heterostructure interconnected 3D N-doped carbon nanotube-graphene hybrids for accelerating polysulfide conversion in Li-S batteries. Chem. Eng. J. 427, 131774 (2022).

    Article  CAS  Google Scholar 

  86. D.R. Deng, F. Xue, Y.J. Jia, J.C. Ye, C.D. Bai, M.S. Zheng, and Q.F. Dong, Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries. ACS Nano 11, 6031 (2017).

    Article  CAS  Google Scholar 

  87. H. Shi, Z. Sun, W. Lv, S. Xiao, H. Yang, Y. Shi, K. Chen, S. Wang, B. Zhang, Q.-H. Yang, and F. Li, Efficient polysulfide blocker from conductive niobium nitride@graphene for Li-S batteries. J. Energy Chem. 45, 135 (2020).

    Article  Google Scholar 

  88. H. You, M. Shi, J. Hao, H. Min, H. Yang, and X. Liu, A spongy mesoporous titanium nitride material as sulfur host for high performance lithium-sulfur batteries. J. Alloys Compd. 823, 153879 (2020).

    Article  CAS  Google Scholar 

  89. D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu, B. Guan, X. Xu, L. Fan, N. Zhang, and K. Sun, MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 9, 1901940 (2019).

    Article  CAS  Google Scholar 

  90. Z. Liu, R. Lian, Z. Wu, Y. Li, X. Lai, S. Yang, X. Ma, Y. Wei, and X. Yan, Ordered dual-channel carbon embedded with molybdenum nitride catalytically induced high-performance lithium-sulfur battery. Chem. Eng. J. 431, 134163 (2022).

    Article  CAS  Google Scholar 

  91. Y. Yan, H. Li, C. Cheng, T. Yan, W. Gao, J. Mao, K. Dai, and L. Zhang, Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride. J. Energy Chem. 61, 336 (2021).

    Article  CAS  Google Scholar 

  92. N. Yan, H. Cui, S. You, J. Shi, Y. Weng, and Y. Liu, Tungsten nitride nanotubes as sulfur host material for high performance Li-S batteries. Inorg. Chem. Commun. 140, 109458 (2022).

    Article  CAS  Google Scholar 

  93. D. He, J. Xiang, C. Zha, R. Wu, J. Deng, Y. Zhao, H. Xie, Y. Liu, P. Wang, W. Wang, Y. Yin, T. Qin, C. Zhu, Z. Rao, L. Wang, and W. Huang, The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries. Appl. Surf. Sci. 525, 146625 (2020).

    Article  CAS  Google Scholar 

  94. K. Fan, Y. Ying, X. Luo, and H. Huang, Nitride MXenes as sulfur hosts for thermodynamic and kinetic suppression of polysulfide shuttling: a computational study. J. Mater. Chem. A 9, 25391 (2021).

    Article  CAS  Google Scholar 

  95. Z. Wang, X. Xu, Z. Liu, D. Zhang, J. Yuan, and J. Liu, Multifunctional metal phosphides as superior host materials for advanced lithium-sulfur batteries. Chemistry 27, 13494 (2021).

    Article  CAS  Google Scholar 

  96. B. Yu, F. Ma, D. Chen, K. Srinivas, X. Zhang, X. Wang, B. Wang, W. Zhang, Z. Wang, W. He, and Y. Chen, MoP QDs@graphene as highly efficient electrocatalyst for polysulfide conversion in Li-S batteries. J. Mater. Sci. Technol. 90, 37 (2021).

    Article  CAS  Google Scholar 

  97. L. Wang, X. Li, Y. Zhang, W. Mao, Y. Li, P.K. Chu, A. Kızılaslan, Z. Zheng, and K. Huo, Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 446, 137050 (2022).

    Article  Google Scholar 

  98. G. Xia, J. Ye, Z. Zheng, X. Li, C. Chen, and C. Hu, Catalytic FeP decorated carbon black as a multifunctional conducting additive for high-performance lithium-sulfur batteries. Carbon 172, 96 (2021).

    Article  CAS  Google Scholar 

  99. J. Chen, W. Feng, W. Zhao, and Z. Shi, Transition metal phosphide composite with metal-organic framework and carbon nanotubes for high-performance lithium-sulfur batteries. J. Alloys Compd. 890, 161794 (2022).

    Article  CAS  Google Scholar 

  100. W. Wu, Y. Zhang, Y. Guo, J. Bai, C. Zhang, Z. Chen, Y. Liu, and B. Xiao, Exploring anchoring performance of InP3 monolayer for lithium-sulfur batteries: a first-principles study. Appl. Surf. Sci. 526, 146717 (2020).

    Article  CAS  Google Scholar 

  101. L. Wang, Y. Shi, M. Liu, A. Zhang, Y.L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H.M. Cheng, Y. Li, and X.Q. Chen, Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties. Nat. Commun. 12, 2361 (2021).

    Article  CAS  Google Scholar 

  102. Y.P. Wang, Z.S. Li, X.R. Cao, S.Q. Wu, and Z.Z. Zhu, Monolayer MSi2P4 (M = V, Nb, and Ta) as highly efficient sulfur host materials for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 14, 27833 (2022).

    Article  CAS  Google Scholar 

  103. X. Song, D. Tian, Y. Qiu, X. Sun, B. Jiang, C. Zhao, Y. Zhang, L. Fan, and N. Zhang, Accelerating sulfur redox reactions by topological insulator Bi2Te3 for high-performance Li-S batteries. Adv. Funct. Mater. 32, 2109413 (2021).

    Article  Google Scholar 

  104. Q. Wu, Y. Chen, X. Hao, T. Zhu, Y. Cao, and W. Wang, Insight into the anchoring effect of two-dimensional TiX2 (X = S, Se, Te) materials for lithium-sulfur batteries: a DFT study. J. Electrochem. Soc. 168, 120516 (2021).

    Article  CAS  Google Scholar 

  105. J. Du, J. Chen, and G. Jiang, A potential anchoring material for lithium-sulfur batteries: monolayer PtTe sheet. Appl. Surf. Sci. 572, 151378 (2022).

    Article  CAS  Google Scholar 

  106. S. Huang, Z. Wang, Y. Von Lim, Y. Wang, Y. Li, D. Zhang, and H.Y. Yang, Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 11, 2003689 (2021).

    Article  CAS  Google Scholar 

  107. Y. Wang, Y. Xiong, Q. Huang, Z. Bi, Z. Zhang, Z. Guo, X. Wang, and T. Mei, Bifunctional VS2-Ti3C2 heterostructure electrocatalyst for boosting polysulfide redox in high performance lithium-sulfur batteries. J. Mater. Chem. A 10, 18866 (2022).

    Article  CAS  Google Scholar 

  108. Z. Zhou, Z. Chen, H. Lv, Y. Zhao, H. Wei, B. Chen, and Y. Wang, A hollow Co0.12Ni1.88S2/NiO heterostructure that synergistically facilitates lithium polysulfide adsorption and conversion for lithium-sulfur batteries. Energy Storage Mater. 51, 486 (2022).

    Article  CAS  Google Scholar 

  109. Y. Kong, X. Ao, X. Huang, J. Bai, S. Zhao, J. Zhang, and B. Tian, Ni-CeO2 Heterostructures in Li-S batteries: a balancing act between adsorption and catalytic conversion of polysulfide. Adv. Sci. 9, e2105538 (2022).

    Article  Google Scholar 

  110. M. Zhao, Y. Lu, Y. Yang, M. Zhang, Z. Yue, N. Zhang, T. Peng, X. Liu, and Y. Luo, A vanadium-based oxide-nitride heterostructure as a multifunctional sulfur host for advanced Li-S batteries. Nanoscale 13, 13085 (2021).

    Article  CAS  Google Scholar 

  111. B. Zhang, C. Luo, Y. Deng, Z. Huang, G. Zhou, W. Lv, Y.B. He, Y. Wan, F. Kang, and Q.H. Yang, Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 10, 2000091 (2020).

    Article  CAS  Google Scholar 

  112. D. Lei, W. Shang, X. Zhang, Y. Li, S. Qiao, Y. Zhong, X. Deng, X. Shi, Q. Zhang, C. Hao, X. Song, and F. Zhang, Facile synthesis of heterostructured MoS2-MoO3 nanosheets with active electrocatalytic sites for high-performance lithium-sulfur batteries. ACS Nano 15, 20478 (2021).

    Article  CAS  Google Scholar 

  113. F. Meng, X. Wu, Q. Hao, X. Chen, F. Chen, and N. Li, Built-in electric field accelerated polysulfide conversion for advanced lithium-sulfur batteries. Mater. Lett. 320, 132265 (2022).

    Article  CAS  Google Scholar 

  114. Z. Cui, C. Zu, W. Zhou, A. Manthiram, and J.B. Goodenough, Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 28, 6926 (2016).

    Article  CAS  Google Scholar 

  115. C.Y. Zhang, Z.W. Lu, Y.H. Wang, Z. Dai, H. Zhao, G.Z. Sun, W. Lan, X.J. Pan, J.Y. Zhou, and E.Q. Xie, Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium-sulfur batteries. Chem. Eng. J. 392, 123734 (2020).

    Article  CAS  Google Scholar 

  116. X. Mao, Y. Yu, L. Zhu, and A. Fu, SnS2 monolayer and SnS2/graphene heterostructure as promising anchoring materials for lithium-sulfur batteries: a computational study. Chem. Phys. 548, 111220 (2021).

    Article  CAS  Google Scholar 

  117. H. Zhang, Z. Zhao, Y.-N. Hou, Y. Tang, J. Liang, X. Liu, Z. Zhang, X. Wang, and J. Qiu, Highly stable lithium-sulfur batteries based on p–n heterojunctions embedded on hollow sheath carbon propelling polysulfides conversion. J. Mater. Chem. A 7, 9230 (2019).

    Article  CAS  Google Scholar 

  118. G. Angamuthu, D. Bosubabu, K. Ramesha, and V. Rengarajan, The Si3N4/MoS2 hetero-structure as an effective polysulfide regulator for high-performance lithium-sulfur battery. Appl. Mater. Today 22, 100916 (2021).

    Article  Google Scholar 

  119. Y. Li, X. Yan, Z. Zhou, J. Liu, Z. Zhang, X. Guo, H. Peng, and G. Li, Synergistic coupling between Fe7S8-MoS2 heterostructure and few layers MoS2-embeded N-/P-doping carbon nanocapsule enables superior Li-S battery performances. Appl. Surf. Sci. 574, 151586 (2022).

    Article  CAS  Google Scholar 

  120. B. Yan, Y. Li, L. Gao, H. Tao, L. Zhang, S. Zhong, X. Li, and X. Yang, Confining ZnS/SnS2 ultrathin heterostructured nanosheets in hollow N-doped carbon nanocubes as novel sulfur host for advanced Li-S batteries. Small 18, 2107727 (2022).

    Article  CAS  Google Scholar 

  121. L. Yan, Z. Zhang, F. Yu, J. Wang, T. Mei, and X. Wang, Rational design of NiCo2S4@MoS2 ball-in-ball heterostructure nanospheres for advanced lithium-sulfur batteries. Electrochim. Acta 383, 138268 (2021).

    Article  CAS  Google Scholar 

  122. Y. Xiao, Y. Liu, G. Qin, P. Han, X. Guo, S. Cao, and F. Liu, Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Compos. B Eng. 193, 108004 (2020).

    Article  CAS  Google Scholar 

  123. D. Yang, Z. Liang, C. Zhang, J.J. Biendicho, M. Botifoll, M.C. Spadaro, Q. Chen, M. Li, A. Ramon, A.O. Moghaddam, J. Llorca, J. Wang, J.R. Morante, J. Arbiol, S.L. Chou, and A. Cabot, NbSe2 Meets C2N: a 2D–2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv. Energy Mater. 11, 2101250 (2021).

    Article  CAS  Google Scholar 

  124. Z. Shen, Q. Zhou, H. Yu, J. Tian, M. Shi, C. Hu, and H. Zhang, CoSe2/MoS2 heterostructures to couple polysulfide adsorption and catalysis in lithium-sulfur batteries. Chin. J. Chem. 39, 1138 (2021).

    Article  CAS  Google Scholar 

  125. Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu, and R. Chen, Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 9, e2103456 (2022).

    Article  Google Scholar 

  126. J. Xu, L. Xu, Z. Zhang, B. Sun, Y. Jin, Q. Jin, H. Liu, and G. Wang, Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium-sulfur full batteries. Energy Storage Mater. 47, 223 (2022).

    Article  Google Scholar 

  127. D. Xiong, X. Li, Z. Bai, and S. Lu, Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14, e1703419 (2018).

    Article  Google Scholar 

  128. X. Tang, X. Guo, W. Wu, and G. Wang, 2D Metal carbides and nitrides (MXenes) as high-erformance electrode materials for lithium-ased batteries. Adv. Energy Mater. 8, 1801897 (2018).

    Article  Google Scholar 

  129. R. Meng, Q. Deng, C. Peng, B. Chen, K. Liao, L. Li, Z. Yang, D. Yang, L. Zheng, C. Zhang, and J. Yang, Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 35, 100991 (2020).

    Article  CAS  Google Scholar 

  130. L. Yuanzheng, Y. Zhicheng, M. Lianghao, L. Buyin, and L. Shufa, A freestanding nitrogen-doped MXene/graphene cathode for high-performance Li-S batteries. Nanoscale Adv. 4, 2189 (2022).

    Article  Google Scholar 

  131. Q. Fang, M. Fang, X. Liu, P. Yu, J.-C. Ren, S. Li, and W. Liu, An asymmetric Ti2CO/WS2 heterostructure as a promising anchoring material for lithium-sulfur batteries. J. Mater. Chem. A 8, 13770 (2020).

    Article  CAS  Google Scholar 

  132. Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang, X. Zhang, Y. Li, J. Lai, Z. Sun, Y. Yang, Y. Chao, C. Li, X. Ge, W. Yang, and S. Guo, Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707578 (2018).

    Article  Google Scholar 

  133. S. Wu, W. Wang, J. Shan, X. Wang, D. Lu, J. Zhu, Z. Liu, L. Yue, and Y. Li, Conductive 1T-VS2−MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity. Energy Storage Mater. 49, 153 (2022).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (51702257), Natural Science Foundation Research Project of Shaanxi Province (2022JQ-109) and Postgraduate Innovation and Practical Ability Training Program of Xi'an Shiyou University (YCS20211064).

Author information

Authors and Affiliations

Authors

Contributions

Jiaxuan Wang, Data Curation, Formal analysis and Writing—Original Draft. Lei Wang, Conceptualization, Supervision and Writing—Review & Editing. Zhao Li, Supervision and Writing—Review & Editing. Jiaying Bi, Visualization and Writing—Review & Editing. Qiong Shi, Writing—Review & Editing. Haiyang Song, Resources and Project administration.

Corresponding authors

Correspondence to Lei Wang or Haiyang Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Li, Z. et al. Recent Advances of Metal Groups and Their Heterostructures as Catalytic Materials for Lithium-Sulfur Battery Cathodes. J. Electron. Mater. 52, 3526–3548 (2023). https://doi.org/10.1007/s11664-023-10355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10355-4

Keywords

Navigation