Skip to main content
Log in

Enhancing the Thermoelectric Power Factor of Mg2Si/MgO Composites by Ag and Bi Codoping

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript


A high carrier concentration and mobility reduce the electrical resistivity (ρ) and enhance the power factor (PF) of thermoelectric (TE) materials based on electrical transport optimization. In this study, Ag/Bi codoped (0%, 1%, 2%, and 3% (wt.%)) Mg2Si/MgO TE material was synthesized by ball milling and hot pressing. The crystal structure, morphology, composition, electrical properties, and TE properties of the Ag/Bi codoped Mg2Si/MgO samples were analyzed by x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy, Hall effect measurements, and Seebeck coefficient/electric resistance measurements, respectively. The results confirmed the correlation between the Mg2Si and MgO structures and indicated that all the samples exhibited n-type thermoelectricity. The Ag/Bi (2 wt.%) co-added Mg2Si/MgO sample yielded a low ρ of 31 mΩ m, a high Seebeck coefficient (S) of –619 µV K−1, and a high PF of 12.4 µW m−1 K−2 at room temperature. The PF of this sample is higher than that of the undoped sample by one order of magnitude (1.3 µW m−1 K−2). Further, at 773 K, the Ag/Bi (2 wt.%) co-added Mg2Si/MgO sample exhibited the highest PF of 112 µW m−1 K−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. T. Seetawan, A. Vora-Ud, F. Ullah, P.B. Thang, M. Kumar, and H.J. Kim, Microstructural and thermoelectric properties of PbTe single crystals as grown by Czochralski method. Mater. Lett. 324, 132798 (2022).

    Article  CAS  Google Scholar 

  2. M. Channegowda, R. Mulla, Y. Nagaraj, S. Lokesh, S. Nayak, S. Mudhulu, C.K. Rastogi, C.W. Dunnill, H.K. Rajan, and A. Khosla, Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS Appl. Energy Mater. 5, 7913–7943 (2022).

    Article  CAS  Google Scholar 

  3. S. Xu, M. Hong, M. Li, Q. Sun, Y. Yin, W. Liu, X. Shi, M. Dargusch, J. Zou, and Z.-G. Chen, Two-dimensional flexible thermoelectric devices: using modelling to deliver optimal capability. Appl. Phys. Rev. 8, 041404 (2021).

    Article  CAS  Google Scholar 

  4. W.-Y. Chen, X.-L. Shi, J. Zou, and Z.-G. Chen, Wearable fiber based thermoelectrics from materials to applications. Nano Energy 81, 105684 (2021).

    Article  CAS  Google Scholar 

  5. J. Kim, J.Y. Lee, J.H. Lim, and N.V. Myung, Optimization of thermoelectric properties of p- type AgSbTe2 thin films via electrochemical synthesis. Electrochim. Acta 196, 579–586 (2016).

    Article  CAS  Google Scholar 

  6. J. Cha, C. Zhou, S.-P. Cho, S.H. Park, and I. Chung, Ultrahigh power factor and electron mobility in n-type Bi2Te3–x%Cu stabilized under excess Te condition. ACS Appl. Mater. Interfaces 11, 30999–31008 (2019).

    Article  CAS  Google Scholar 

  7. A. Vora-ud, K. Chaarmart, W. Kasemsin, S. Boonkirdram, and T. Seetawan, Transparent thermoelectric properties of copper iodide thin films. Physica B: Phys Condens. Mat. 625, 413527 (2022).

    Article  CAS  Google Scholar 

  8. D. Narducci, Do we really need high thermoelectric figures of merit? A critical appraisal to the power conversion efficiency of thermoelectric materials. Appl. Phys. Lett. 99, 102104 (2011).

    Article  Google Scholar 

  9. W. Liu, H.S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C.P. Opeil, S. Wilson, C.-W. Chu, and Z. Ren, n-type thermoelectric material Mg2Sn0.75Ge0.25 for high powe generation. Proc. Natl. Acad. Sci. U.S.A. 112, 3269–3274 (2015).

    Article  CAS  Google Scholar 

  10. P.K.J. Sanam, M. Shah, and P.P. Pradyumnan, Structure induced modification on thermoelectric and optical properties by Mg doping in CuCrO2 nanocrystals. Solid State Commun. 353, 114855 (2022).

    Article  Google Scholar 

  11. L.D. Ivanova, Preparation of thermoelectric materials based on higher manganese silicide. Inorg. Mater. 47, 965–970 (2011).

    Article  CAS  Google Scholar 

  12. D. Vasilevskiy, M.K. Keshavarz, J. Dufourcq, H. Ihou-Mouko, C. Navonne, R.A. Masut, and S. Turenne, Bulk Mg2Si based n-type thermoelectric material produced by gas atomization and hot extrusion. Mater. Today-Proc. 2, 523–531 (2015).

    Article  Google Scholar 

  13. L. Zheng, X. Zhang, H. Liu, S. Li, Z. Zhou, Q. Lu, J. Zhang, and F. Zhang, Optimized nanostructure and thermoelectric performances of Mg2(Si0.4Sn0.6)Six solid solutions by in situ nanophase generation. J. Alloys Compd. 71, 452–457 (2016).

    Article  Google Scholar 

  14. K. Kondoh, H. Oginuma, A. Kimura, S. Matsukawa, and T. Aizawa, In-situ synthesis of Mg2Si intermetallics via powder metallurgy. Process Mater. Trans. 44, 981–985 (2003).

    Article  CAS  Google Scholar 

  15. J. Umeda, K. Kondoh, and H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 504, 157–162 (2009).

    Article  Google Scholar 

  16. G. Kim, H. Lee, J. Kim, J.W. Roh, I. Lyo, B.W. Kim, K.H. Lee, and W. Lee, Up-scaled solid-state reaction for synthesis of doped Mg2Si. Scripta Mater. 128, 53–56 (2017).

    Article  CAS  Google Scholar 

  17. G. Kim, J. Kim, H. Lee, S. Cho, I. Lyo, S. Noh, B.W. Kim, S.W. Kim, K.H. Lee, and W. Lee, Co-doping of Al and Bi to control the transport properties for improving thermoelectric performance of Mg2Si. Scripta Mater. 116, 11–15 (2016).

    Article  CAS  Google Scholar 

  18. A. Delgado, S. Cordova, I. Lopez, D. Nemir, and E. Shafirovich, Mechanically activated combustion synthesis and shockwave consolidation of magnesium Silicide. J. Alloys Compd. 658, 422–429 (2016).

    Article  CAS  Google Scholar 

  19. N. Satyala, J.S. Krasinski, and D. Vashaee, Simultaneous enhancement of mechanical and thermoelectric properties of polycrystalline magnesium silicide with conductive glass inclusion. Acta Mater. 74, 141–150 (2014).

    Article  CAS  Google Scholar 

  20. Z. Zhang, C. Zhang, Q. Liao, L. Qin, Y. Deng, and L. Liang, Optimizing electrical and thermal transport properties of Ca3Co4O9 based thermoelectric materials by Ag and Fe co-addition. Mater. Today Commun. 33, 104866 (2022).

    Article  CAS  Google Scholar 

  21. T. Wang, H. Wang, W. Su, J. Zhai, X. Wang, T. Chen, and C. Wang, Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit. J. Mater. Sci. 54, 9049–9062 (2019).

    Article  CAS  Google Scholar 

  22. L. Wang, X.Y. Qin, W. Xiong, and X.G. Zhu, Fabrication and mechanical properties of bulk nanocrystalline intermetallic Mg2Si. Mater. Sci. Eng. A 459, 216–222 (2007).

    Article  Google Scholar 

  23. J. Umeda, K. Kondoh, and H. Imai, Friction and wear behavior of sintered magnesium composite reinforced with CNT-Mg2Si/MgO. Mater. Sci. Eng. A 504, 157–162 (2009).

    Article  Google Scholar 

  24. A. Vora-ud, S. Thaowonkaew, M. Rittiruam, M. Horprathum, and T. Seetawan, Affected annealing time treatment on preferred orientation and thermoelectric properties of h-GeSbTe0.5 alloy thin film. Curr. Appl. Phys. 16, 305–310 (2016).

    Article  Google Scholar 

  25. X. Tang, Y. Zhang, Y. Zheng, K. Peng, T. Huang, X. Lu, G. Wang, S. Wang, and X. Zhou, Improving thermoelectric performance of p-type Ag-doped Mg2Si0. 4Sn0.6 prepared by unique melt spinning method. Appl. Therm. Eng. 111, 1396–1400 (2017).

    Article  CAS  Google Scholar 

  26. E.M. Godlewska, K. Mars, P. Drozdz, A. Tchorz, and M. Ksiazek, Reaction and diffusion phenomena in Ag-doped Mg2Si. J. Alloys Compd. 657, 755–764 (2016).

    Article  CAS  Google Scholar 

  27. J. Tani and H. Kido, Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B 364, 218–224 (2005).

    Article  CAS  Google Scholar 

Download references


This work was financially supported by the Council of Thailand (NRCT) through the Program Management Unit for Human Resources & Institutional Development Research and Innovation (PMU-B) (B16F650001) and the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Thailand, through Research Grant for New Scholar (Grant No. RGNS 65-174).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Athorn Vora-ud or Tosawat Seetawan.

Ethics declarations

Conflict of interest

On behalf of all authors, I declare that we do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singsoog, K., Vora-ud, A., Charoenphakdee, A. et al. Enhancing the Thermoelectric Power Factor of Mg2Si/MgO Composites by Ag and Bi Codoping. J. Electron. Mater. 52, 4768–4774 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: