Skip to main content
Log in

Interfacial Reactions in Ni/Sb2Te3 and Co0.2Ni0.8/Sb2Te3 Couples

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sb2Te3 is an important thermoelectric material. The interfacial reactions in the Ni/Sb2Te3 and Co0.2Ni0.8/Sb2Te3 couples are examined to verify if Ni and Co0.2Ni0.8 are suitable barrier layer materials. The Ni-Sb-Te phase equilibria isothermal sections and Co-Ni-Sb-Te isothermal tetrahedrons are proposed to provide fundamental information and for better understanding of the interfacial reactions. Only one reaction phase, λ2-NiSb1−xTe2x, is observed in the Ni/Sb2Te3 couples reacted at 200°C, 300°C, and 400°C. When reacting at 500°C for 6 h, the reaction phase is λ1-Ni(Sb1−xTex)1+y. With a longer reaction time, the second phase, Ni5.66SbTe2, is formed. Note, the compositional ratios of Sb/Te of all the reaction phases remain as 2/3. The result indicates that Ni is the dominating diffusion species. The reaction results in the Co0.2Ni0.8/Sb2Te3 couples are similar to those in the Ni/Sb2Te3 couples. The reaction phase at 400°C is λ2-NiSb1−xTe2x , and are λ1-Ni(Sb1−xTex)1+y + Ni5.66SbTe2 phases at 500°C with a longer reaction time. The compositional ratios of Sb/Te in the reaction phases are also 2/3, and the Co contents in the reaction phases are very limited. Ni is also the dominating diffusion species in the Co0.2Ni0.8/Sb2Te3 couples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H. Wu, Y. Sun, Y. Wang, H. Qin, J. Zhu, Y. Zhu, J. Hu, M. Guo, J. Liu, and M. Liu, Improved thermoelectric and mechanical performance of Sb2Te3- based materials toward the segmented operation. Mater. Today Energy (2022). https://doi.org/10.1016/j.mtener.2022.101045.

    Article  Google Scholar 

  2. X.Y. Wang, H.J. Wang, B. Xiang, L.W. Fu, H. Zhu, D. Chai, B. Zhu, Y. Yu, N. Gao, Z.Y. Huang, and F.Q. Zu, Thermoelectric performance of Sb2Te3-based alloys is improved by introducing PN junctions. ACS Appl. Mater. Interfaces. 10(27), 23277–23284 (2018).

    Article  CAS  Google Scholar 

  3. B. Xu, J. Zhang, G.Q. Yu, S.S. Ma, Y.S. Wang, and Y.X. Wang, Thermoelectric properties of monolayer Sb2Te3. J. Appl. Phys. 124(16), 165104 (2018).

    Article  Google Scholar 

  4. S.-W. Chen, H.-J. Wu, C.-Y. Wu, C.-F. Chang, and C.-Y. Chen, Reaction evolution and alternating layer formation in Sn/(Bi0.25Sb0.75)2Te3 and Sn/Sb2Te3 couples. J. Alloy. Compd. 553, 106–112 (2013).

    Article  CAS  Google Scholar 

  5. S.M. Souza, C.M. Poffo, D.M. Trichês, J.C. de Lima, T.A. Grandi, A. Polian, and M. Gauthier, High pressure monoclinic phases of Sb2Te3. Phys. B 407(18), 3781–3789 (2012).

    Article  CAS  Google Scholar 

  6. T. Thonhauser, T.J. Scheidemantel, J.O. Sofo, J.V. Badding, and G.D. Mahan, Thermoelectric properties of Sb2Te3 under pressure and uniaxial stress. Phys. Rev. B 68, 085201 (2003).

    Article  Google Scholar 

  7. Y. Hutabalian, C.-M. Chen, H.-H. Chen, Z.-K. Hu, and S.-W. Chen, Interfacial reactions in Ni/Se-90at%Te and Ni/Pb1-xSnxSe couples. Mater. Chem. Phys. 282, 125959 (2022).

    Article  CAS  Google Scholar 

  8. X.-K. Hu, S.-M. Zhang, F. Zhao, Y. Liu, and W.-S. Liu, Thermoelectric device: contact interface and interface materials. J. Inorg. Mater. 34(3), 269–278 (2019).

    Article  Google Scholar 

  9. W.-A. Chen, S.-W. Chen, S.-M. Tseng, H.-W. Hsiao, Y.-Y. Chen, G.J. Snyder, and Y. Tang, Interfacial reactions in Ni/CoSb3 couples at 450°C. J. Alloy. Compd. 632, 500–504 (2015).

    Article  CAS  Google Scholar 

  10. W.P. Lin, D.E. Wesolowski, and C.C. Lee, Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules. J. Mater. Sci.: Mater. Electron. 22, 1313–1320 (2011).

    CAS  Google Scholar 

  11. Y.-H. Chao, S.-W. Chen, C.-H. Chang, and C.-C. Chen, Phase equilibria of Sn-Co-Ni system and interfacial reactions in Sn/(Co.Ni) couples. Metall. and Mater. Trans. A. 39A, 477–489 (2008).

    Article  CAS  Google Scholar 

  12. M. Tashiro, S. Sukenaga, K. Ikemoto, K. Shinoda, T. Kajitani, S. Suzuki, and H. Shibata, Interfacial reactions between pure Cu, Ni, and Ni–Cu alloys and p-type Bi2Te3 bulk thermoelectric material. J. Mater. Sci. 56, 16545–16557 (2021).

    Article  CAS  Google Scholar 

  13. Z.-W. Sun, K.-W. Cheng, S.-W. Lin, V.K. Ranganayakulu, Y.-Y. Chen, S.-J. Chiu, T.-W. Lee, and A.T. Wu, Stoichiometric effect of Sb2Te3 thin film on thermoelectric property. Appl. Energy Mater. 5, 7026–7033 (2022).

    Article  CAS  Google Scholar 

  14. S. Budaka, and Z. Xiao, Thermoelectric and optical properties of advanced thermoelectric devices from Ni/Bi2Te3/Ni and Ni/Sb2Te3/Ni thin films. J. Vac. Sci. Technol., B 35, 051401 (2017).

    Article  Google Scholar 

  15. A.E. Abken, Chemical stability of sputtered Mo/Sb2Te3 and Ni/Sb2Te3 layers in view of stable back contacts for CdTe/CdS thin film solar cells. Sol. Energy Mater. Sol. Cells 73(4), 391–409 (2002).

    Article  CAS  Google Scholar 

  16. H. H. Hsu, C. H. Cheng, C. H. Huang, S. H. Chiou, Y. L. Lin, M. C. Lin, C. C. Wu, and Y. C. Lee, Thermodynamic Stability of Ni/Sb2Te3 Interface by First-Principles Calculations, 223rd ECS Meeting, The Electrochemical Society, (2013).

  17. Y.-H. Lai, H.-C. Yang, and S.-W. Chen, Co-Sb-Te phase equilibria and Co/Sb2Te3 interfacial reactions, submitted for publication, (2023).

  18. G. H. Cha, S. Y. Lee, and P. Nash, Ni-Sb (Nickel-Antimony), Phase diagrams of binary Nickel alloys, pp. 284–290, (1991).

  19. C.A.O. Zhanmin, Y. Takaku, I. Ohnuma, R. Kainuma, H. Zhu, and K. Ishida, Thermodynamic assessment of the Ni-Sb binary system. Rare Met. 27(4), 384–392 (2008).

    Article  Google Scholar 

  20. S. Y. Lee, P. Nash, and T. B. Massalski, Ni-Te (Nickel-Tellurium), binary alloy phase diagrams, Vol. 3, pp. 2869–2872, (1990).

  21. C.-M. Arvhult, C. Gueneau, S. Gosse, and M. Selleby, Thermodynamic assessment of the Ni-Te system. J. Mater. Sci. 54, 11304–11319 (2019).

    Article  CAS  Google Scholar 

  22. G. Gosh, The Sb-Te (antimony-tellurium) system. J. Phase Equilibria 15(3), 349–360 (1994).

    Article  Google Scholar 

  23. S. Sole, C. Schmetterer, and K. W. Richter, A revision of the Sb-Te binary phase diagram and crystal structure of the modulated gamma-phase field. J. Phase Equilibria Diff. (2022).

  24. F. Laufek, M. Drábek, and R. Skála, The system Ni-Sb-Te at 400°C. Can. Mineral. 48(5), 1069–1079 (2010).

    Article  CAS  Google Scholar 

  25. S.-W. Chen, H.-H. Chen, and Y.T. Kuo, Ni/SnSe2 interfacial reactions and Ni–Se–Sn phase equilibria. Mater. Chem. Phys. 293, 126826 (2023).

    Article  CAS  Google Scholar 

  26. A.A. Kodentsov, M.R. Rijnders, and F.J.J. van Loo, Periodic pattern formation in solid state reactions related to the Kirkendall effect. Acta Mater. 46(18), 6521–6528 (1998).

    Article  CAS  Google Scholar 

  27. Y. Austin Chang, The role of chemical metallurgy in the emerging field of materials science and engineering. Metall. Mater. Trans. B 25, 789–816 (1994).

    Article  Google Scholar 

  28. A. Guivarch, R. Guérin, J. Caulet, and A. Poudoulec, Metallurgical study of Ni/GaAs contacts: II: Interfacial reactions of Ni thin films on (111) and (001) GaAs. J. Appl. Phys. 66, 2129–2136 (1989).

    Article  CAS  Google Scholar 

  29. T. Sands, V.G. Keramidas, R. Gronsky, and J. Washburn, Initial stages of the Pd-GaAs reaction: Formation and decomposition of ternary phases. Thin Solid Films 136(1), 105–122 (1986).

    Article  CAS  Google Scholar 

  30. W.-A. Chen, S.-W. Chen, S.-M. Tseng, H.-W. Hsiao, Y.-Y. Chen, G.J. Snyder, and Y. Tang, Interfacial reactions in Ni/CoSb3 couples at 450 °C. J. Alloy. Compd. 632(25), 500–504 (2015).

    Article  CAS  Google Scholar 

  31. S.-W. Chen, T.-R. Yang, H.-W. Hsiao, P.-H. Lin, J.-H. Huang, and J.-D. Huang, Ni/Te and Ni/Ag2Te interfacial reactions. Mater. Chem. Phys. 180, 396–403 (2016).

    Article  CAS  Google Scholar 

  32. Y. Zhang, C. Li, Z. Du, C. Guo, and J.-C. Tedenac, The thermodynamic assessment of the ternary Co–Ni–Sb system. CALPHAD Comput. Coupling Phase Diag. Thermochem. 33, 405–412 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Science and Technology Council of Taiwan (MOST 107-2923-E-007-005-MY3) and (NSTC 111-2634-F-007-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinn-wen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sw., Lai, Yh. & Chang, J. Interfacial Reactions in Ni/Sb2Te3 and Co0.2Ni0.8/Sb2Te3 Couples. J. Electron. Mater. 52, 3685–3697 (2023). https://doi.org/10.1007/s11664-023-10332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10332-x

Keywords

Navigation