Skip to main content
Log in

Impact of Substrate Morphology and Structural Defects in Freestanding Gallium Nitride on the Breakdown Characteristics of GaN-on-GaN Vertical Diodes

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The morphology of GaN substrates grown by hydride vapor-phase epitaxy (HVPE) and by ammonothermal methods has been correlated with reverse-bias stress testing applied to GaN-on-GaN p-i-n diodes. GaN substrates grown by HVPE showed ordered, well-separated arrays of surface features when observed using x-ray topography (XRT). All fabricated diodes that overlapped with these features had reverse-bias voltages typically of less than 100 V before reaching a critical leakage current limit that was set at 10–6 A. In contrast, diodes not overlapping with such features reached reverse-bias voltages exceeding 300 V for the same leakage current limit. After surface etching, the HVPE substrate showed evidence for defect clusters and macro-pits. XRT images of the ammonothermal GaN substrate revealed no visible features. However, some diodes fabricated on the ammonothermal substrate still failed to reach reverse-bias voltages comparable to those of the HVPE-grown samples. Diodes on HVPE and ammonothermal substrates with low breakdown voltage showed crater-like surface damage. Progressive ion milling across such failed devices revealed the presence of voids and threading dislocations that penetrated deep into the substrate (~ 25 µm); these features were not observed in diodes with high reverse-bias voltages and low leakage current. This work emphasizes the potential unsuspected impact of substrate morphology in limiting the performance of vertical GaN devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Zhao, H. Fu, G.T. Wang, and S. Nakamura, Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes. Adv. Opt. Photon. 10, 246 (2018).

    Article  CAS  Google Scholar 

  2. H. Fu, Z. Lu, X.H. Zhao, Y.H. Zhang, S.P. DenBaars, S. Nakamura, and Y. Zhao, Nonpolar vertical GaN-on-GaN p-n diodes grown on freestanding (10–10) m-plane GaN substrates. J. Disp. Technol. 12, 736 (2016).

    Article  CAS  Google Scholar 

  3. J.X. Zeng, G. An, W. Zhou, H. Li, T. Wang, L. Duan, L. Jiang, and H. Yu, A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability. Electronics 7, 377 (2018).

    Article  CAS  Google Scholar 

  4. T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L.T. Romano, and S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN. Jpn. J. Appl. Phys. 37, L398 (1998).

    Article  CAS  Google Scholar 

  5. I.C. Kizilyalli, E.P. Carlson, D.W. Cunningham, and Y.Z. Xu, Power electronic devices and systems based on bulk GaN substrates. Mater. Sci. Forum 924, 799 (2018).

    Article  Google Scholar 

  6. J. Chen, W. Yi, T. Kimura, S. Takashima, M. Edo, and T. Sekiguchi, Cathodoluminescence study of Mg implanted: the impact of dislocation on Mg diffusion. Appl. Phys. Express 12, 051010 (2019).

    Article  CAS  Google Scholar 

  7. S. Fujita, Wide-bandgap semiconductor materials: For their full bloom. Jpn. J. Appl. Phys. 54, 030101 (2015).

    Article  CAS  Google Scholar 

  8. D. F. Storm, T. O. McConkie, M. T. Hardy, D. S. Katzer, N. Nepal, D. J. Meyer, and D. J. Smith, Surface preparation of freestanding GaN substrates for homoepitaxial GaN growth by rf-plasma MBE, J. Vac. Sci. Technol., B 35, 02B109 (2017).

  9. H.Y. Shih, M. Shiojiri, C.H. Chen, S.F. Yu, C.T. Ko, J.R. Yang, R.M. Lin, and M.J. Chen, Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs. Sci. Rep. 5, 13671 (2015).

    Article  Google Scholar 

  10. I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, Vertical power p-n diodes based on bulk GaN. IEEE Trans. Electron Devices 62, 414 (2015).

    Article  CAS  Google Scholar 

  11. K. Motoki, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. hara, Y. Kumagai, A. Koukitu, and H. Seki, Preparation of large freestanding GaN substrates by Hydride Vapor Phase Epitaxy using GaAs as a starting substrate, Jpn. J. Appl. Phys. 40, L140 (2001)

  12. M. Lee, D. Mikulik, M. Yang, and S. Park, Nearly perfect GaN crystal via pit-assisted growth by HVPE. CrystEngComm 19, 2036 (2017).

    Article  CAS  Google Scholar 

  13. Y.-Y. Wong, E.Y. Chang, T.-H. Yang, J.-R. Chang, J.-T. Ku, M.K. Hudait, W.-C. Chou, M. Chen, and K.-L. Lin, The roles of threading dislocations on electrical properties of AlGaN/GaN heterostructure grown by MBE. J. Electrochem. Soc. 157, H746 (2010).

    Article  CAS  Google Scholar 

  14. P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S. Keller, J.S. Speck, S.P. Denbaars, and U.K. Mishra, Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998).

    Article  CAS  Google Scholar 

  15. P.J. Hansen, Y.E. Strausser, A.N. Erickson, E.J. Tarsa, P. Kozodoy, E.G. Brazel, J.P. Ibbetson, U. Mishra, V. Narayanamurti, S.P. Denbaars, and J.S. Speck, Scanning capacitance microscopy imaging of threading dislocations in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition. Appl. Phys. Lett. 72, 2247 (1998).

    Article  CAS  Google Scholar 

  16. D.S. Li, H. Chen, H.B. Yu, H.Q. Jia, Q. Huang, and J.M. Zhou, Dependence of leakage current on dislocations in GaN-based light-emitting diodes. J. Appl. Phys. 96, 1111 (2004).

    Article  CAS  Google Scholar 

  17. J.W.P. Hsu, M.J. Manfra, R.J. Molnar, B. Heying, and J.S. Speck, Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by lolecular beam epitaxy on GaN templates. Appl. Phys. Lett. 81, 79 (2002).

    Article  CAS  Google Scholar 

  18. J.W.P. Hsu, M.J. Manfra, D.V. Lang, S. Richter, S.N.G. Chu, A.M. Sergent, R.N. Kleiman, L.N. Pfeiffer, and R.J. Molnar, Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes. Appl. Phys. Lett. 78, 1685 (2001).

    Article  CAS  Google Scholar 

  19. M. Lee, H.U. Lee, K.M. Song, and J. Kim, Significant improvement of reverse leakage current characteristics of Si-based homoepitaxial InGaN/GaN blue light emitting diodes. Sci. Rep. 9, 970 (2019).

    Article  Google Scholar 

  20. M.R. Johnson, D.A. Cullen, L. Liu, T.S. Kang, F. Ren, C.Y. Chang, S.J. Pearton, S. Jang, J.W. Johnson, and D.J. Smith, Transmission electron microscopy characterization of electrically stressed AlGaN/GaN high electron mobility transistor devices. J. Vac. Sci. Technol. B 30, 062204 (2012).

    Article  Google Scholar 

  21. A.Y. Polyakov, E.B. Yakimov, N.B. Smirnov, A.V. Govorkov, A.S. Usikov, H. Helava, Y.N. Makarov, and I.-H. Lee, Structural defects responsible for excessive leakage current in Schottky diodes prepared on undoped n-GaN films grown by hydride vapor phase epitaxy. J. Vac. Sci. Technol. B 32, 051212 (2014).

    Article  Google Scholar 

  22. T. Nakamura and K. Motoki, GaN substrates technologies for optical devices. Proc. IEEE 101, 2221 (2013).

    Article  CAS  Google Scholar 

  23. A. Usui, H. Sunakawa, A. Sakai, and A.A. Yamaguchi, Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Jpn. J. Appl. Phys. 36, L899 (1997).

    Article  CAS  Google Scholar 

  24. M. Lee, D. Mikulik, J. Kim, Y. Tak, J. Kim, M. Shim, Y. Park, U. Chung, E. Yoon, and S. Park, A novel growth method of freestanding GaN using in situ removal of Si substrate in hydride vapor phase epitaxy. Appl. Phys. Express 6, 125502 (2013).

    Article  Google Scholar 

  25. T. Hashimoto, F. Wu, J.S. Speck, and S. Nakamura, Growth of bulk GaN with low dislocation density by the ammonothermal method using polycrystalline GaN nutrient. Jpn. J. Appl. Phys. 46, L525 (2007).

    Article  CAS  Google Scholar 

  26. P. Peri, K. Fu, H. Fu, Y. Zhao, and D.J. Smith, Characterization of as-grown and regrown GaN-on-Gan structures for vertical p-n power devices. J. Electron. Mater. 50, 2637 (2021).

    Article  CAS  Google Scholar 

  27. H. Fu, K. Fu, X. Huang, H. Chen, I. Baranowski, T. Yang, J. Montes, and Y. Zhao, High performance vertical GaN-on-GaN p-n power diodes with hydrogen-plasma-based edge termination. IEEE Electron. Device Lett. 39, 1018 (2018).

    Article  CAS  Google Scholar 

  28. K. Fu, H. Fu, X. Huang, T.-H. Yang, C.-Y. Cheng, P. Peri, H. Chen, J. Montes, C. Yang, J. Zhou, X. Deng, X. Qi, D.J. Smith, S.M. Goodnick, and Y. Zhao, Reverse leakage analysis for as-grown and regrown vertical GaN-on-GaN Schottky barrier diodes. IEEE J. Electron. Devices Soc. 8, 74 (2020).

    Article  CAS  Google Scholar 

  29. P. Peri, K. Fu, H. Fu, Y. Zhao, and D.J. Smith, Effect of substrate morphology on stress-tested GaN-on-GaN vertical p-n diodes. Microsc. Microanal. 27, 1760 (2021).

    Article  Google Scholar 

  30. I.C. Kizilyalli, D.P.Bour, T.R. Prunty, and G. Ye, U.S. Patent 2015/0123138 A1 (2016) High power gallium nitride electronics using miscut substrates,

  31. I-J Song, J-Y Han, U.S. Patent 20070082465A1 (2013), Method of fabricating GaN substrate https://patents.google.com/patent/US20070082465

  32. S. Fujiwara, K. Uematsu, H. Kasai, T. Okahisa, U.S. Patent 9153742B2 (2015), GaN crystal free-standing substrate and method for producing the same https://patents.google.com/patent/US9153742B2/en

  33. B. Raghothamachar, Y. Liou, H. Peng, T. Ailihumaer, M. Dudley, F. Shadedipour-Sandvik, K.A. Jones, A. Armstrong, A.A. Allerman, J. Han, H. Fu, K. Fu, and Y. Zhao, X-ray topography characterization of gallium nitride substrates for power device development. J. Cryst. Growth 544, 125709 (2020).

    Article  CAS  Google Scholar 

  34. P. Peri, K. Fu, H. Fu, Y. Zhao, and D.J. Smith, Structural breakdown in high power GaN-on-GaN p-n diode devices stressed to failure. J. Vac. Sci. Technol. A 38, 063402 (2020).

    Article  CAS  Google Scholar 

  35. Y. Mikawa, T. Ishinabe, Y. Kagamitani, T. Mochizuki, H. Ikeda, K. Iso, T. Takahashi, K. Kubota, Y. Enatsu, Y. Tsukada, S. Izumisawa, Recent progress of large size and low dislocation bulk GaN growth. Proc. SPIE 11280, Gallium Nitride Materials and Devices XV, 1128002 (2020).

  36. M. Bockowski, M. Iwinska, M. Amilusik, M. Fijalkowski, B. Lucznik, and T. Sochacki, Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds. Semicond. Sci. Technol. 31, 093002 (2016).

    Article  Google Scholar 

  37. T. Narita, M. Kanechika, J. Kojima, H. Watanabe, T. Kondo, T. Uesugi, S. Yamaguchi, Y. Kimoto, K. Tomita, Y. Nagasato, S. Ikeda, M. Kosaki, T. Oka, and J. Suda, Identification of type of threading dislocation causing reverse leakage in GaN p-n junctions after continuous forward current stress. Sci. Reps. 12, 1458 (2022).

    Article  CAS  Google Scholar 

  38. B. Setera and A. Christou, Impact of threading dislocations in GaN power switching devices. ECS Trans. 102, 25 (2021).

    Article  CAS  Google Scholar 

  39. M. Meneghini, C.D. Santi, I. Abid, M. Buffolo, M. Cioni, R.A. Khadar, L. Nela, N. Zagini, A. Chini, F. Medjdoub, G. Meneghesso, G. Verzellesi, E. Zanoni, and E. Matioli, GaN-based power devices: physics, reliability, and perspectives. J. Appl. Phys. 130, 181101 (2021).

    Article  CAS  Google Scholar 

  40. B. Setera and A. Christou, Threading dislocations in GaN high-voltage switches. Microelectron. Reliab. 124, 114336 (2021).

    Article  CAS  Google Scholar 

  41. R. Kucharski, T. Sochacki, B. Lucznik, and M. Bockowski, Growth of bulk GaN crystals. J. Appl. Phys. 120, 050902 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by ARPA-E Award DE-AR0000868. The authors acknowledge the use of facilities within the John M. Cowley Center for High Resolution Electron Microscopy and the Eyring Materials Center at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prudhvi Peri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peri, P., Fu, K., Fu, H. et al. Impact of Substrate Morphology and Structural Defects in Freestanding Gallium Nitride on the Breakdown Characteristics of GaN-on-GaN Vertical Diodes. J. Electron. Mater. 52, 3343–3351 (2023). https://doi.org/10.1007/s11664-023-10303-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10303-2

Keywords

Navigation