Skip to main content
Log in

Density Functional Theory-Based Study of Ag/ZnO Schottky Diode

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Here, a ZnO thin film was deposited on a silicon substrate. The hexagonal structure of this deposited film was measured by x-ray diffraction and atomic force microscopy (AFM) without further processing, specifically annealing. Density functional theory (DFT) and DFT+U calculations were conducted on ideal ZnO bulk crystal with crystal size \(a=3.249\,\)Å and \(c=5.207\,\)Å, and an experimental unit cell estimated by x-ray and AFM analysis \(a=3.069\,\)Å and \(c=5.3156\,\)Å. A vertical Schottky diode with the structure Ag/ZnO/Ti/Al/n-Si(100) was fabricated on the aforementioned deposited film with optimized parameters. The structure showed Schottky behavior without annealing, indicating oxide layer formation at the Ag/ZnO interface. We obtained contradictory results to the experimental Schottky nature for Ag/ZnO when calculating the structure by DFT+U. When the silver oxide work function was used, we found that the current–voltage characteristics of the device simulated using COMSOL Multiphysics were closer to the experimental results, strengthening the hypothesis of dielectric formation at the interface. Finally, we introduced a vertical power diode structure that is not known to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Vyas, A short review on properties and applications of ZnO based thin film and devices. Johns. Matthey Technol. Rev. 64, 202 (2020)

    Article  CAS  Google Scholar 

  2. J. Semple, S. Rossbauer, and T.D. Anthopoulos, Analysis of Schottky contact formation in coplanar Au/ZnO/Al nanogap radio frequency diodes processed from solution at low temperature. ACS Appl. Mater. Interfaces 8(35), 23167 (2016)

    Article  CAS  Google Scholar 

  3. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1(1), 011304 (2014)

    Article  Google Scholar 

  4. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, and S.-J. Cho, Morkoç, H, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)

    Article  Google Scholar 

  5. R. Tung, Schottky-barrier formation at single-crystal metal-semiconductor interfaces. Phys. Rev. Lett. 52(6), 461 (1984)

    Article  CAS  Google Scholar 

  6. T. Lakshmipriya and S.C. Gopinath, Introduction to Nanoparticles and Analytical Devices, in Nanoparticles in Analytical and Medical Devices. (Elsevier, 2021), pp.1–29

    Google Scholar 

  7. A.B. Yadav, A. Pandey, and S. Jit, Pd Schottky contacts on sol-gel derived ZnO thin films with nearly ideal Richardson constant. IEEE Electron Device Lett. 35(7), 729 (2014)

    Article  CAS  Google Scholar 

  8. D. Somvanshi and S. Jit, Mean barrier height and Richardson constant for Pd/ZnO thin film-based Schottky diodes grown on n-Si substrates by thermal evaporation method. IEEE Electron Device Lett. 34(10), 1238 (2013)

    Article  CAS  Google Scholar 

  9. A.B. Yadav, A. Pandey, D. Somvanshi, and S. Jit, Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes. IEEE Trans. Electron Devices 62(6), 1879 (2015)

    Article  CAS  Google Scholar 

  10. A.B. Yadav and S. Jit, Particle size effects on the hydrogen sensing properties of Pd/ZnO Schottky contacts fabricated by sol-gel method. Int. J. Hydrog. Energy 42(1), 786 (2017)

    Article  CAS  Google Scholar 

  11. K. Harun, N.A. Salleh, B. Deghfel, M.K. Yaakob, and A.A. Mohamad, DFT+U calculations for electronic, structural, and optical properties of ZnO wurtzite structure: a review. Results Phys. 16, 102829 (2020)

    Article  Google Scholar 

  12. H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  13. B. Himmetoglu, R.M. Wentzcovitch, and M. Cococcioni, First-principles study of electronic and structural properties of CuO. Phys. Rev. B 84(11), 115108 (2011)

    Article  Google Scholar 

  14. A.B. Yadav and B.S. Sannakashappanavar, True ohmic contact on rf sputtered ZnO thin film by using the nonalloy Ti/Au metallization scheme. J. Alloys Compd. 770, 701 (2019)

    Article  CAS  Google Scholar 

  15. H. Von Wenckstern, E. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, and M. Grundmann, Lateral homogeneity of Schottky contacts on n-type ZnO. Appl. Phys. Lett. 84(1), 79 (2004)

    Article  Google Scholar 

  16. C.A. Mead, Metal-semiconductor surface barriers. Solid-State Electron. 9(11–12), 1023 (1966)

    Article  CAS  Google Scholar 

  17. M. Allen, M. Alkaisi, and S. Durbin, Metal Schottky diodes on Zn-polar and O-polar bulk ZnO. Appl. Phys. Lett. 89(10), 103520 (2006)

    Article  Google Scholar 

  18. A. Polyakov, N. Smirnov, E. Kozhukhova, V. Vdovin, K. Ip, Y. Heo, D. Norton, and S. Pearton, Electrical characteristics of Au and Ag Schottky contacts on n-ZnO. Appl. Phys. Lett. 83(8), 1575 (2003)

    Article  CAS  Google Scholar 

  19. V. Ulianova, F. Rasheed, S. Bolat, G.T. Sevilla, Y. Didenko, X. Feng, I. Shorubalko, D. Bachmann, D. Tatarchuk, M.B. Tahoori et al., Fabrication, characterization and simulation of sputtered Pt/In-Ga-Zn-O Schottky diodes for low-frequency half-wave rectifier circuits. IEEE Access 8, 111783 (2020)

    Article  Google Scholar 

  20. H. Frenzel, A. Lajn, H. Von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, and M. Grundmann, Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv. Mater. 22(47), 5332 (2010)

    Article  CAS  Google Scholar 

  21. L. Rajan, C. Periasamy, and V. Sahula, An in-depth study on electrical and hydrogen sensing characteristics of ZnO thin film with radio frequency sputtered gold schottky contacts. IEEE Sens. J. 19(9), 3232 (2019)

    Article  CAS  Google Scholar 

  22. L. Rajan, C. Periasamy, and V. Sahula, Electrical characterization of Au/ZnO thin film Schottky diode on silicon substrate. Perspect. Sci. 8, 66 (2016)

    Article  Google Scholar 

  23. M. Benlamri, B.D. Wiltshire, Y. Zhang, N. Mahdi, K. Shankar, and D.W. Barlage, High breakdown strength Schottky diodes made from electrodeposited ZnO for power electronics applications. ACS Appl. Electron. Mater. 1(1), 13 (2019)

    Article  CAS  Google Scholar 

  24. J.H. Werner, Schottky barrier and pn-junction I/V plots-small signal evaluation. Appl. Phys. A 47(3), 291 (1988)

    Article  Google Scholar 

  25. A. Catellani, A. Calzolari, and A. Ruini, Effect of ultrathin gold on the ohmic-to-Schottky transition in Al/ZnO contacts: a first-principles investigation. J. Appl. Phys. 115(4), 043711 (2014)

    Article  Google Scholar 

  26. K.E. Jahromi, M.H.M. Ara, S.S. Mousavi, and B. Efafi, Investigation of a reliable ohmic contact to n-type ZnO thin films prepared by sol-gel method. IEEE Electron Device Lett. 37(1), 43 (2015)

    Article  Google Scholar 

  27. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, and A. Dal Corso, Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  28. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M.B. Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, and N. Colonna, Advanced capabilities for materials modelling with quantum espresso. J. Phys. Condens. Matter 29(46), 465901 (2017)

    Article  CAS  Google Scholar 

  29. P. Giannozzi, O. Baseggio, and P. Bonfà, Quantum espresso toward the exascale. J. Chem. Phys. 152(15), 154105 (2020)

    Article  CAS  Google Scholar 

  30. G. Prandini, A. Marrazzo, I.E. Castelli, N. Mounet, and N. Marzari, Precision and efficiency in solid-state pseudopotential calculations. NPJ Comput. Mater. 4(1), 1 (2018)

    Article  Google Scholar 

  31. K.F. Garrity, J.W. Bennett, K.M. Rabe, and D. Vanderbilt, Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446 (2014)

    Article  CAS  Google Scholar 

  32. E. Kucukbenli, M. Monni, B. Adetunji, X. Ge, G. Adebayo, N. Marzari, S. De Gironcoli, A. D. Corso, Projector augmented-wave and all-electron calculations across the periodic table: a comparison of structural and energetic properties, arXiv preprint arXiv:1404.3015

  33. I. Nekrasov, M. Korotin, and V. Anisimov, Coulomb interaction in oxygen p-shell in LDA + U method and its influence on calculated spectral and magnetic properties of transition metal oxides. arXiv preprint cond-mat/0009107 (2000)

  34. M. Benlamri, B.D. Wiltshire, Y. Zhang, N. Mahdi, K. Shankar, and D.W. Barlage, High breakdown strength Schottky diodes made from electrodeposited ZnO for power electronics applications. ACS Appl. Electron. Mater. 1(1), 13 (2019)

    Article  CAS  Google Scholar 

  35. T. Akane, K. Sugioka, and K. Midorikawa, Nonalloy ohmic contact fabrication in a hydrothermally grown n-ZnO (0001) substrate by KRF excimer laser irradiation. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 18(3), 1406 (2000)

    Article  CAS  Google Scholar 

  36. H.S. Yang, D. Norton, S. Pearton, and F. Ren, Ti/Au n-type ohmic contacts to bulk ZnO substrates. Appl. Phys. Lett. 87(21), 212106 (2005)

    Article  Google Scholar 

  37. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, 2008)

    Google Scholar 

  38. M. Brötzmann, U. Vetter, and H. Hofsäss, BN/ZnO heterojunction diodes with apparently giant ideality factors. J. Appl. Phys. 106(6), 063704 (2009)

    Article  Google Scholar 

  39. E.W.J. Mitchell and J.W. Mitchell, The work functions of copper silver and aluminium. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 210, 70 (1951)

    CAS  Google Scholar 

Download references

Acknowledgments

The author Aniruddh Bahadur Yadav is grateful for the Relevant Research Project grant from the Board of Research in Nuclear Sciences (BRNS) Trombay, Mumbai 400085, India, with sanction number 58/14/20/2022-BRNS, to complete this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors are aware of this work and contributed equally after the formulation of the experiment by the first author.

Corresponding author

Correspondence to Aniruddh Bahadur Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.B., Narasimha Murty, N.V.L., Lasya, B. et al. Density Functional Theory-Based Study of Ag/ZnO Schottky Diode. J. Electron. Mater. 52, 3228–3241 (2023). https://doi.org/10.1007/s11664-023-10297-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10297-x

Keywords

Navigation