Skip to main content
Log in

Microstructure and High-Temperature Thermoelectric Performance of InxCo4Sb12 Fabricated via Microwave Synthesis Combined with Spark Plasma Sintering

  • Brief Communication
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Indium-filled InxCo4Sb12 thermoelectric bulk ingots are fabricated via microwave synthesis combined with spark plasma sintering. All major x-ray diffraction peaks are indexed to the body-centered cubic CoSb3, and secondary phases are detected in different samples. Nano-sized CoSb2, incoherent grain boundary and dislocations are observed by scanning transmission electron microscopy (STEM). The carrier concentration of InxCo4Sb12 is 4.95 × 1019–2.91 × 1020 cm−3. Minimum lattice thermal conductivity of 1.63 Wm−1 K−1 is achieved. In0.8Co4Sb12 shows a maximum ZT of 0.90 at 673 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. G. Tan, L.D. Zhao, and M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016).

    Article  CAS  Google Scholar 

  2. C. Hu, X. Zeng, Y. Liu, M. Zhou, H. Zhao, T.M. Tritt, J. He, J. Jakowski, P.R. Kent, and J. Huang, Effects of partial La filling and Sb vacancy defects on CoSb3 skutterudites. Phys. Rev. B 95, 165204 (2017).

    Article  Google Scholar 

  3. Y. Tang, Z.M. Gibbs, L.A. Agapito, G. Li, H.-S. Kim, M.B. Nardelli, S. Curtarolo, and G.J. Snyder, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 14, 1223 (2015).

    Article  CAS  Google Scholar 

  4. J. Gainza, F. Serrano-Sánchez, J.E. Rodrigues, J. Prado-Gonjal, N.M. Nemes, N. Biskup, O.J. Dura, J.L. Martínez, F. Fauth, and J.A. Alonso, Unveiling the correlation between the crystalline structure of M-Filled CoSb3 (M = Y, K, Sr) skutterudites and their thermoelectric transport properties. Adv. Funct. Mater. 30, 2001651 (2020).

    Article  CAS  Google Scholar 

  5. Y. Tang, Y. Qiu, L. Xi, X. Shi, W. Zhang, L. Chen, S.-M. Tseng, S.-W. Chen, and G.J. Snyder, Phase diagram of In–Co–Sb system and thermoelectric properties of In-containing skutterudites. Energy Environ. Sci. 7, 812–819 (2014).

    Article  CAS  Google Scholar 

  6. W. Li, J. Wang, Y. Xie, J.L. Gray, J.J. Heremans, H.B. Kang, B. Poudel, S.T. Huxtable, and S. Priya, Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity. Chem. Mater. 31, 862–872 (2019).

    Article  CAS  Google Scholar 

  7. W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, and X. Tang, Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. J. Am. Chem. Soc. 131, 3713–3720 (2009).

    Article  CAS  Google Scholar 

  8. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837–7846 (2011).

    Article  CAS  Google Scholar 

  9. T. He, J. Chen, H.D. Rosenfeld, and M. Subramanian, Thermoelectric properties of indium-filled skutterudites. Chem. Mater. 18, 759–762 (2006).

    Article  CAS  Google Scholar 

  10. S. Le Tonquesse, É. Alleno, V. Demange, C. Prestipino, O. Rouleau, and M. Pasturel, Reaction mechanism and thermoelectric properties of In0·22Co4Sb12 prepared by magnesiothermy. Mater. Today Chem. 16, 100223 (2020).

    Article  Google Scholar 

  11. P. Wei, W.-Y. Zhao, C.-L. Dong, X. Yang, J. Yu, and Q.-J. Zhang, Excellent performance stability of Ba and In double-filled skutterudite thermoelectric materials. Acta Mater. 59, 3244–3254 (2011).

    Article  CAS  Google Scholar 

  12. H.J. Kitchen, S.R. Vallance, J.L. Kennedy, N. Tapia-Ruiz, L. Carassiti, A. Harrison, A.G. Whittaker, T.D. Drysdale, S.W. Kingman, and D.H. Gregory, Modern microwave methods in solid-state inorganic materials chemistry: from fundamentals to manufacturing. Chem. Rev. 114, 1170–1206 (2014).

    Article  CAS  Google Scholar 

  13. J. Leszczynski, V. Da Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, and R. Smith, Electronic band structure, magnetic, transport and thermodynamic properties of In-filled skutterudites InxCo4Sb12. J. Phys. D: Appl. Phys. 46, 495106 (2013).

    Article  Google Scholar 

  14. K. Biswas, S. Muir, and M.A. Subramanian, Rapid microwave synthesis of indium filled skutterudites: an energy efficient route to high performance thermoelectric materials. Mater. Res. Bull. 46, 2288–2290 (2011).

    Article  CAS  Google Scholar 

  15. Y. Lei, R. Zheng, H. Yang, Y. Li, C. Yong, X. Jiang, R. Liu, and R. Wan, Microwave synthesis combined with SPS sintering to fabricate Pb doped p-type BiCuSeO oxyselenides thermoelectric bulks in a few minutes. Scr. Mater. 199, 113885 (2021).

    Article  CAS  Google Scholar 

  16. Y. Lei, W. Gao, R. Zheng, Y. Li, W. Chen, L. Zhang, R. Wan, H. Zhou, Z. Liu, and P.K. Chu, Ultrafast synthesis of Te-doped CoSb3 with excellent thermoelectric properties. ACS Appl. Energy Mater. 2, 4477–4485 (2019).

    Article  CAS  Google Scholar 

  17. Y. Lei, H. Yang, J. Qiu, C. Yong, F. Gao, X. Fan, S. Peng, H. Hu, R. Wan, and Y. Li, Microwave synthesis and enhanced thermoelectric performance of p-type Bi0.90Pb0.10Cu1–xFexSeO oxyselenides. ACS Appl. Mater. Inter. 14, 27902–27910 (2022).

    Article  CAS  Google Scholar 

  18. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, Characterization of Lorenz number with seebeck coefficient measurement. APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  19. A. Möchel, I. Sergueev, N. Nguyen, G.J. Long, F. Grandjean, D. Johnson, and R.P. Hermann, Lattice dynamics in the FeSb3 skutterudite. Phys. Rev. B 84, 64302–64309 (2011).

    Article  Google Scholar 

  20. X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren, and J. Sui, Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv. Energy Mater. 7, 1602582 (2017).

    Article  Google Scholar 

  21. Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, and G.J. Snyder, Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 29, 1606768 (2017).

    Article  Google Scholar 

  22. L. You, Y. Liu, X. Li, P. Nan, B. Ge, Y. Jiang, P. Luo, S. Pan, Y. Pei, and W. Zhang, Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci. 11, 1848–1858 (2018).

    Article  CAS  Google Scholar 

  23. D. Qin, B. Cui, X. Meng, P. Qin, L. Xie, Q. Zhang, W. Liu, J. Cao, W. Cai, and J. Sui, High thermoelectric performance from high carrier mobility and reduced lattice thermal conductivity in Ba, Yb double-filled Skutterudites. Mater. Today Phys. 8, 128–137 (2019).

    Article  Google Scholar 

  24. Z. Qin, K. Cai, S. Chen, and Y. Du, Preparation and electrical transport properties of In filled and Te-doped CoSb3 skutterudite. J. Mater. Sci.: Mater Electron. 24, 4142–4147 (2013).

    CAS  Google Scholar 

  25. M. Benyahia, V. Ohorodniichuk, E. Leroy, A. Dauscher, B. Lenoir, and E. Alleno, High thermoelectric figure of merit in mesostructured In0.25Co4Sb12 n-type skutterudite. J. Alloys Compd. 735, 1096–1104 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the Open Research Project from the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (Grant No. 2021P4FZG10A), National Natural Science Foundation of China (Grant No. 51974005, No. 51574134), University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2020-007), and Open Research Project from the State Key Laboratory of Refractories and Metallurgy (Grant No. G202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Data availability

Data will be made available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, C., Lei, Y., Jiang, X. et al. Microstructure and High-Temperature Thermoelectric Performance of InxCo4Sb12 Fabricated via Microwave Synthesis Combined with Spark Plasma Sintering. J. Electron. Mater. 52, 2913–2918 (2023). https://doi.org/10.1007/s11664-023-10296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10296-y

Keywords

Navigation