Skip to main content
Log in

Sintering Behavior, Phase Structure, and Microwave Dielectric Properties of Low-Permittivity Li5Al5Zn8Ge9O36 Ceramics

  • Review Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A low-permittivity Li5Al5Zn8Ge9O36 microwave dielectric ceramic was prepared via a conventional solid-phase reaction, and its sintering behavior, phase structure, and microwave dielectric properties were investigated. The Li5Al5Zn8Ge9O36 ceramic had a cubic spinel structure, and no other phases were detected. The microstructure of the ceramic was relatively uniform and dense. The Li5Al5Zn8Ge9O36 ceramic sintered at 1150°C exhibited excellent microwave dielectric properties (εr = 6.66, Q × f = 24,600 GHz, and τf = −38 ppm/°C), indicating that it is a good candidate for microwave equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.A. Vanderah, Talking ceramics. Science 298, 1182–1184 (2002).

    Article  CAS  Google Scholar 

  2. I.M. Reaney and D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89, 2063–2072 (2006).

    CAS  Google Scholar 

  3. M.T. Sebastian, R. Ubic, and H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015).

    Article  Google Scholar 

  4. B.K. Choi, S.W. Jang, and E.S. Kim, Dependence of microwave dielectric properties on crystallization behaviour of CaMgSi2O6 glass-ceramics. Mater. Res. Bull. 67, 234 (2015).

    Article  CAS  Google Scholar 

  5. B. Ullah, W. Lei, Y.F. Yao, X.C. Wang, X.H. Wang, M. UrRahman, and W.Z. Lu, Structure and synergy performance of (1 - x)Sr0.25Ce0.5TiO3 -xLa(Mg0.5Ti0.5)O3 based microwave dielectric ceramics for 5G architecture. J. Alloys Compd. 763, 990 (2018).

    Article  CAS  Google Scholar 

  6. D. Zhou, L.X. Pang, D.W. Wang, Z.M. Qi, and M. Reaney, High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates. ACS Sustain. Chem. Eng. 6, 11138 (2018).

    Article  CAS  Google Scholar 

  7. W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, and X.C. Wang, Controllable τf value of barium silicate microwave dielectric ceramics with different Ba/Si ratios. J. Am. Ceram. Soc. 101, 25 (2018).

    Article  CAS  Google Scholar 

  8. H. Yu, T. Luo, L. He, and J. Liu, Effect of ZnO on Mg2TiO4-MgTiO3-CaTiO3 microwave dielectric ceramics prepared by reaction sintering route. Adv. Appl. Ceram. 118, 98–105 (2019).

    Article  CAS  Google Scholar 

  9. H. Zhou, X. Tan, X. Chen, and H. Ruan, Effect of raw materials pretreated by physical grinding method on the sintering ability and microwave dielectric properties of Li2MgTiO4 ceramics. J. Alloys Compd. 731, 839 (2018).

    Article  CAS  Google Scholar 

  10. H. Zhou, J. Gong, N. Wang, and X. Chen, A novel temperature stable microwave dielectric ceramic with low sintering temperature and high quality factor. Ceram. Int. 42, 8822 (2016).

    Article  CAS  Google Scholar 

  11. Y. Tian, Y. Tang, K. Xiao, C. Li, L. Duan, and L. Fang, Crystal structure, Raman spectroscopy and microwave dielectric properties of Li1+xZnNbO4 (0 ≤ x ≤ 0.05) ceramics. J. Alloys Compd. 777, 1–7 (2019).

    Article  CAS  Google Scholar 

  12. Y. Ohishli, Y. Miyauchi, H. Ohsato, and K. Kakimoto, Controlled temperature coefficient of resonant frequency of A12O3-TiO2 ceramics by annealing treatment. Jpn. J. Appl. Phys. 43, L749–L751 (2004).

    Article  Google Scholar 

  13. T. Tsunooka, M. Androu, Y. Higashida, H. Sugiura, and H. Ohsato, Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J. Eur. Ceram. Soc. 23, 2573–2578 (2003).

    Article  CAS  Google Scholar 

  14. H. Ohsato, T. Tsunooka, T. Sugiyama, K. Kakimoto, and H. Ogawa, Forsterite ceramics for millimeterwave dielectrics. J. Electroceram. 17, 445–450 (2006).

    Article  CAS  Google Scholar 

  15. G. Anoop, K. Mini Krishna, and M.K. Jayaraj, The effect of Mg incorporation on structural and optical properties of Zn2GeO4: Mn phosphor. J. Electrochem. Soc. 155, J7–J10 (2008).

    Article  CAS  Google Scholar 

  16. A. Navrotsky, Thermodynamic relations among olivine, spinel, and phenacite structures in silicates and germinates. IV. The system ZnO-MgO-GeO2. J. Solid State Chem. 12, 12–15 (1975).

    Article  CAS  Google Scholar 

  17. S. Takahashi, A. Kan, and H. Ogawa, Microwave dielectric properties and crystal structures of spinel-structured MgAl2O4 ceramics synthesized by a molten-salt method. J. Eur. Ceram. Soc. 37, 1001–1006 (2017).

    Article  CAS  Google Scholar 

  18. K.P. Surendran, N. Santha, P. Mohanan, and M.T. Sebastian, Temperature stable low loss ceramic dielectrics in (1–x)ZnAl2O4-xTiO2 system for microwave substrate applications. Eur. Phys. J. B 41, 301–306 (2004).

    Article  CAS  Google Scholar 

  19. A. Belous, O. Ovchar, D. Durilin, M.M. Krzmanc, M. Valant, and D. Suvorov, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89, 3441–3445 (2006).

    Article  CAS  Google Scholar 

  20. X.S. Lyu, L.X. Li, H. Sun, S. Li, J. Ye, and S. Zhang, A novel low-loss spinel microwave dielectric ceramic CoZnTiO4. J. Mater. Sci. Mater. Electron. 2015(26), 8663–8666 (2015).

    Article  Google Scholar 

  21. H.C. Xiang, L. Fang, W.S. Fang, Y. Tang, and C.C. Li, A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J. Eur. Ceram. Soc. 37, 625–629 (2017).

    Article  CAS  Google Scholar 

  22. H. Luo, L. Fang, H.C. Xiang, Y. Tang, and C.C. Li, Two novel low-firing germanates Li2MGe3O8 (M = Ni, Co) microwave dielectric ceramics with spinel structure. Ceram. Int. 43, 1622–1627 (2017).

    Article  CAS  Google Scholar 

  23. K. Wang, H. Zhou, W. Sun, X. Chen, and H. Ruan, Solid-state reaction mechanism and microwave dielectric properties of 0.95MgTiO(3)-005CaTiO(3) ceramics. J. Mater. Sci. Mater. Electron. 29(3), 2001–2006 (2018).

    Article  CAS  Google Scholar 

  24. M. Parastoo, T.-N. Ehsan, and T.-A. Hamid, Effect of zinc ions non-stoichiometry on the microstructure and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Alloys Compd. 695, 3772–3778 (2017).

    Article  Google Scholar 

  25. W.S. Kim, E.S. Kim, and K.H. Yoon, Effects of Sm3+ substitution on dielectric properties of Ca1–xSm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc. 82, 2111 (1999).

    Article  CAS  Google Scholar 

  26. H.C. Xiang, L. Fang, X.W. Jiang, and C.C. Li, Low-firing and microwave dielectric properties of Na2YMg2V3O12 ceramic. Ceram. Int. 42, 3701–3705 (2016).

    Article  CAS  Google Scholar 

  27. C.L. Huang and S.H. Huang, Low-loss microwave dielectric ceramics in the (Co1–xZnx) TiO3 (x = 0–0.1) system. J. Alloys Compd. 515, 8–11 (2012).

    Article  CAS  Google Scholar 

  28. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993).

    Article  CAS  Google Scholar 

  29. S.H. Yoon, D.W. Kim, S.Y. Cho, and K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006).

    Article  CAS  Google Scholar 

  30. A.J. Bosman and E.E. Havinga, Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 129, 1593–1600 (1963).

    Article  CAS  Google Scholar 

  31. J. Varghese, T. Joseph, K.P. Surendran, T.P.D. Rajan, and M.T. Sebastian, Hafnium silicate: a new microwave dielectric ceramic with low thermal expansivity. Dalton Trans. 44, 5146–5152 (2015).

    Article  CAS  Google Scholar 

  32. H.L. Dong and F. Shi, Effect of synthesis temperature on crystal structure and phonon modes of Ba[Zn1/3(Nb0.4Ta0.6)2/3]O3 ceramics. Cryst. Eng. Commun. 14, 8268–8273 (2012).

    Article  CAS  Google Scholar 

  33. E.S. Kim, B.S. Chun, R. Freer, and R.J. Cernik, Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731–1736 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Nos. 61761015 and 11664008), Natural Science Foundation of Guangxi (Nos. 2017GXNSFFA198011, 2018GXNSFFA050001 and 2017GXNSFDA198027) and High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanfu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, S., Qu, X., Xiao, Y. et al. Sintering Behavior, Phase Structure, and Microwave Dielectric Properties of Low-Permittivity Li5Al5Zn8Ge9O36 Ceramics. J. Electron. Mater. 52, 2932–2939 (2023). https://doi.org/10.1007/s11664-023-10295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10295-z

Keywords

Navigation