Skip to main content

Advertisement

Log in

Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries

  • Topical Collection: Advanced Metal Ion Batteries
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Sulfide electrolyte-based all-solid-state batteries (ASSLBs) have been considered the most promising candidate for next-generation energy storage systems owing to the high ionic conductivity and soft nature of sulfide electrolytes. However, the inevitable side reactions between sulfide electrolytes and high-voltage cathode materials hinder their further application. Herein, we construct a robust and low-cost Li3PO4 (LPO) buffering layer on the surface of the NCM622 particles through a facile solution method. This strategy promotes the diffusion of lithium ions at the interface and significantly reduces the growth of battery polarization during the cycles by suppressing the side reactions between electrolytes and cathode materials. The assembled ASSLBs employing the LPO-NCM622 cathode exhibited superior cycling and rate performance compared with their counterpart, delivering high capacity of 177−1 and maintaining 79.2% of initial capacity after 100 cycles. Meanwhile, encouraging specific capacity of 75 mAh g−1 was reached at 1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.R. Li, H. Su, M. Li, J.Y. Xiang, Z. Jiang, X.L. Wang, X.H. Xia, C.D. Gu, and J.P. Tu, A deformable dual-layer interphase for high-performance Li10GeP2S12-based solid-state Li metal batteries. Chem. Eng. J. 431, 134019 (2022).

    Article  CAS  Google Scholar 

  2. Q. Zhao, S. Stalin, C.Z. Zhao, and L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229 (2020).

    Article  CAS  Google Scholar 

  3. N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: present and future. Mater. Today 18, 252 (2015).

    Article  CAS  Google Scholar 

  4. T. Famprikis, P. Canepa, J.A. Dawson, M.S. Islam, and C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278 (2019).

    Article  CAS  Google Scholar 

  5. J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, and Y. Shao Horn, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140 (2016).

    Article  CAS  Google Scholar 

  6. Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, and H. Zhu, Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019).

    Article  CAS  Google Scholar 

  7. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  8. M. Armand and J.M. Tarascon, Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  9. S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W.G. Zeier, F.H. Richter, and J. Janek, Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259 (2020).

    Article  CAS  Google Scholar 

  10. Y. Liu, H. Peng, H. Su, Y. Zhong, X.L. Wang, X.H. Xia, C.D. Gu, and J.P. Tu, Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity. Adv. Mater. 34, 2107346 (2022).

    Article  CAS  Google Scholar 

  11. N. Rosero, C. Nataly, A. Miura, and K. Tadanaga, Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery. J. Sol Gel Sci. Technol. 89, 303 (2018).

    Article  Google Scholar 

  12. H. Su, Y. Liu, Y. Zhong, J. Li, X. Wang, X. Xia, C. Gu, and J. Tu, Stabilizing the interphase between Li and argyrodite electrolyte through synergistic phosphating process for all-solid-state lithium batteries. Nano Energy 96, 107104 (2022).

    Article  CAS  Google Scholar 

  13. Y. Liu, H. Su, M. Li, J.Y. Xiang, X.Z. Wu, Y. Zhong, X.L. Wang, X.H. Xia, C.D. Gu, and J.P. Tu, In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. J. Mater. Chem. A 9, 13531 (2021).

    Article  CAS  Google Scholar 

  14. Y.Z. Zhu, X.F. He, and Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685 (2015).

    Article  CAS  Google Scholar 

  15. Y.Z. Zhu, X.F. He, and Y.F. Mo, First principles study on electrochemical and chemical stability of solid electrolyte–electrode interfaces in all-solid-state Li-ion batteries. J. Mater. Chem. A 4, 3253 (2016).

    Article  CAS  Google Scholar 

  16. H.M. Chen, C. Maohua, and S. Adams, Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys. 17, 16494 (2015).

    Article  CAS  Google Scholar 

  17. A. Banerjee, X. Wang, C. Fang, E.A. Wu, and Y.S. Meng, Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev 120, 6878 (2020).

    Article  CAS  Google Scholar 

  18. P. Minnmann, L. Quillman, S. Burkhardt, F.H. Richter, and J. Janek, Editors’ choice—quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J. Electrochem. Soc. 168, 040537 (2021).

    Article  CAS  Google Scholar 

  19. X.S. Liu, B.Z. Zheng, J. Zhao, W. Zhao, Z. Liang, Y. Su, C. Xie, K. Zhou, Y. Xiang, J. Zhu, H. Wang, G. Zhong, Z. Gong, J. Huang, and Y. Yang, Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 11, 2003583 (2021).

    Article  CAS  Google Scholar 

  20. K. Niek and W. Marnix, Space-charge layers in all-solid-state batteries; important or negligible? ACS Appl. Energy Mater. 1, 5609 (2018).

    Google Scholar 

  21. A. Banerjee, H. Tang, X. Wang, J.H. Cheng, H. Nguyen, M. Zhang, D.H.S. Tan, T.A. Wynn, E.A. Wu, J.M. Doux, T. Wu, L. Ma, G.E. Sterbinsky, M.S. D’Souza, S.P. Ong, and Y.S. Meng, Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries. ACS Appl. Mater. Interfaces 11, 43138 (2019).

    Article  CAS  Google Scholar 

  22. W. Zhang, T. Leichtweiss, S.P. Culver, R. Koerver, D. Das, D.A. Weber, W.G. Zeier, and J. Janek, The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces 9, 35888 (2017).

    Article  CAS  Google Scholar 

  23. L.L. Wang, R.C. Xie, B.B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T.S. Chan, J. Luo, G. Cui, and L. Chen, In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nat. Commun. 11, 5889 (2020).

    Article  CAS  Google Scholar 

  24. C. Yu, S. Ganapathy, E. Eck, H. Wang, S. Basak, Z. Li, and M. Wagemaker, Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface. Nat. Commun. 8, 1086 (2017).

    Article  Google Scholar 

  25. S. Wang, W. Zhang, X. Chen, D. Das, R. Ruess, A. Gautam, F. Walther, S. Ohno, R. Koerver, Q. Zhang, W.G. Zeier, F.H. Richter, C.W. Nan, and J. Janek, Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries. Adv. Energy Mater. 11, 2100654 (2021).

    Article  CAS  Google Scholar 

  26. Y. Wang, Y. Lv, Y.B. Su, L.Q. Chen, H. Li, and F. Wu, 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy 90, 106589 (2021).

    Article  CAS  Google Scholar 

  27. L.F. Peng, H.T. Ren, J.Z. Zhang, S. Chen, C. Yu, X. Miao, Z. Zhang, Z. He, M. Yu, L. Zhang, S. Cheng, and J. Xie, LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures. Energy Storage Mater. 43, 53–61 (2021). https://doi.org/10.1016/j.ensm.2021.08.028.

    Article  Google Scholar 

  28. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, and T. Sasaki, LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486 (2007).

    Article  CAS  Google Scholar 

  29. X.L. Li, L.B. Jin, D.W. Song, H. Zhang, X. Shi, Z. Wang, L. Zhang, and L. Zhu, LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J. Energy Chem. 40, 39 (2020).

    Article  Google Scholar 

  30. X.H. Li, Z. Jiang, D. Cai, X.L. Wang, X.H. Xia, C.D. Gu, and J.P. Tu, Single-crystal-layered Ni-rich oxide modified by phosphate coating boosting interfacial stability of Li10SnP2S12-based all-solid-state Li batteries. Small 17, 2103830 (2021).

    Article  CAS  Google Scholar 

  31. M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, and J. Cho, Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362 (2021).

    Article  CAS  Google Scholar 

  32. Q. Zhang, D.X. Cao, Y. Ma, A. Natan, P. Aurora, and H.L. Zhu, Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019).

    Article  CAS  Google Scholar 

  33. Z.H. Gao, H.B. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, and Y. Huang, Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater. 30, 1705702 (2018).

    Article  Google Scholar 

  34. H. Su, Z. Jiang, Y. Liu, J. Li, C. Gu, X. Wang, X. Xia, and J. Tu, Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Mater. 2, 200005 (2022).

    Google Scholar 

  35. D. Chen, F. Zheng, L. Li, M. Chen, X. Zhong, W. Li, and L. Lu, Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J. Power Sources 341, 147 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant. No. U20A20126) and the Key Research and Development Program of Zhejiang Province (2022C01071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Wang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 167 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Y., Fan, Z., Zhang, D. et al. Surface Construction of a High-Ionic-Conductivity Buffering Layer on a LiNi0.6Co0.2Mn0.2O2 Cathode for Stable All-Solid-State Sulfide-Based Batteries. J. Electron. Mater. 52, 2904–2912 (2023). https://doi.org/10.1007/s11664-023-10286-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10286-0

Keywords

Navigation