Skip to main content
Log in

Structure, Dielectric Properties, and Grain Growth Kinetics of MO-ZrO2-Ta2O5 (M = Zn, Co) Microwave Ceramics

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

MO-ZrO2-Ta2O5 (M = Zn, Co) ceramics were prepared by solid-phase reaction method. Thermo-gravimetric-differential thermal behavior, crystal structure, and microwave dielectric properties of ZnO-ZrO2-Ta2O5 and CoO-ZrO2-Ta2O5 ceramics were compared in this paper. Both of them exhibited monoclinic wolframite structure. Densest microstructures with uniform grains were obtained at 1400°C and 1425°C in the cases of M = Zn and Co, respectively. ZnO-ZrO2-Ta2O5 and CoO-ZrO2-Ta2O5 exhibited comparable εr ~ 20.26 and 24.30, while the former had Q × f ~ 60, 983 GHz and the latter had Q × f ~ 95,300 GHz. The grain growth exponent and activation energy obtained from the phenomenological kinetic equation indicated the growth process of ceramics. The grain growth of Zn-based ceramic was dominated by interfacial reactions and lattice diffusion. For the other one, the grain growth mechanisms were grain boundary diffusion and lattice diffusion at high temperatures. The grain growth progress of them both affected by lattice diffusion. The growth process of ZnO-ZrO2-Ta2O5 ceramics was faster than that of CoO-ZrO2-Ta2O5 ceramic. However, the grains were overgrown and grew slowly at 1425°C and 1450°C, which was caused by the excessive high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Rangan, T.S. Rappaport, and E. Erkip, Millimeter wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014). https://doi.org/10.1109/JPROC.2014.2299397.

    Article  Google Scholar 

  2. T.S. Rappaport, S. Shu, R. Mayzus, Z. Hangd, and F. Gutierrezt, Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1(1), 335–349 (2013). https://doi.org/10.1109/ACCESS.2013.2260813.

    Article  Google Scholar 

  3. J.K. Plourde, and C.L. Ren, Application of dielectric resonators in microwave components. IEEE Trans. Microw. Theory 29(8), 754–770 (1981). https://doi.org/10.1109/TMTT.1981.1130444.

    Article  Google Scholar 

  4. J. Petzelt, S. Kamba, G.V. Kozlov, and A.A. Volkov, Dielectric properties of microwave ceramics investigated by infrared and submillimetre spectroscopy. Ferroelectrics 176(1), 145–165 (1996). https://doi.org/10.1080/00150199608223607.

    Article  CAS  Google Scholar 

  5. C.F. Shih, W.M. Li, K.S. Tung, and W.D. Hsu, Low-loss microwave dielectric material base on magnesium titanate. J. Am. Ceram. Soc. 93(9), 2448–2451 (2010). https://doi.org/10.1111/j.1551-2916.2010.03790.x.

    Article  CAS  Google Scholar 

  6. Q.W. Liao, L.X. Li, P. Zhang, X. Ding, X. Ren, and W. Zhang, A microwave dielectric material for microstrip patch antenna substrate. J. Mater. Res. 26(19), 2503–2510 (2011). https://doi.org/10.1557/jmr.2011.281.

    Article  CAS  Google Scholar 

  7. H.W. Lee, J.H. Park, S. Nahm, D.W. Kim, and J.G. Park, Low-temperature sintering of temperature-stable LaNbO4 microwave dielectric ceramics. Mater. Res. Bull. 45(1), 21–24 (2010). https://doi.org/10.1016/j.materresbull.2009.09.008.

    Article  CAS  Google Scholar 

  8. H. Jantunen, R. Rautioaho, A. Uusimäki, and S. Leppävuori, Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology. J. Eur. Ceram. Soc. 20(14–15), 2331–2336 (2000). https://doi.org/10.1016/S0955-2219(00)00145-X.

    Article  CAS  Google Scholar 

  9. L. Fang, Q. Yu, C.Z. Hu, and H. Zhang, High dielectric constant and low-loss dielectric ceramics of Ba5LnZnNb9O30 (Ln = La, Nd and Sm). Mater. Lett. 61(19), 4140–4143 (2007). https://doi.org/10.1016/j.matlet.2007.01.068.

    Article  CAS  Google Scholar 

  10. S.D. Ramarao, and V. Murthy, Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics. Scr. Mater 69(3), 274–277 (2013). https://doi.org/10.1016/j.scriptamat.2013.04.018.

    Article  CAS  Google Scholar 

  11. Z. Feng, C.F. Xing, J.X. Bi, X.S. Jiang, and H.T. Wu, Sintering characteristics and microwave dielectric properties of low loss CoZrNb2O8 ceramics achieved by reaction sintering process. J. Alloys Compd. 686, 923–929 (2016). https://doi.org/10.1016/j.jallcom.2016.06.219.

    Article  CAS  Google Scholar 

  12. Q.W. Liao, L.X. Li, X. Ren, X.X. Yu, and D. Guo, A low sintering temperature low loss microwave dielectric material ZnZrNb2O8. J. Am. Ceram. Soc. 95(11), 3363–3365 (2012). https://doi.org/10.1111/j.1551-2916.2012.05450.x.

    Article  CAS  Google Scholar 

  13. H.L. Pan, C.F. Xing, J.X. Bi, X.S. Jiang, and H. Wu, Sintering characteristics and microwave dielectric properties of low loss ZnZrNb2O8 ceramics achieved by reaction sintering process. J. Alloys Compd. 687(6), 274–279 (2016). https://doi.org/10.1016/j.jallcom.2016.06.029.

    Article  CAS  Google Scholar 

  14. X.S. Lyu, L.X. Li, S. Zhang, H. Sun, S. Li, J. Ye, B.W. Zhang, and J.T. Li, A new low-loss dielectric material ZnZrTa2O8 for microwave devices. J. Eur. Ceram. Soc. 36(3), 931–935 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.015.

    Article  CAS  Google Scholar 

  15. W.S. Xia, L.Y. Zhang, Y. Wang, S.E. Jin, Y.P. Xu, Z.W. Zuo, and L.W. Shi, Extrinsic effects on microwave dielectric properties of high-Q MgZrTa2O8 ceramics. J. Mater. Sci. Mater. Electron. 27(11), 11325–11330 (2016). https://doi.org/10.1007/s10854-016-5256-0.

    Article  CAS  Google Scholar 

  16. Y. Zhang, S.H. Ding, T.X. Song, and Y.C. Zhang, Microwave dielectric properties of temperature stable MO-ZrO2-Ta2O5 ceramics. J. Alloys Compd. 798, 194–203 (2019). https://doi.org/10.1016/j.jallcom.2019.05.251.

    Article  CAS  Google Scholar 

  17. W.Y. Du, Y.L. Ai, W.H. Chen, W. He, J.J. Zhang, Y.Q. Fan, and Y.X. Gong, Grain growth kinetics and growth mechanism of columnar Al2O3 crystals in xNb2O5-7.5La2O3- Al2O3 ceramic composites. Ceram. Int. 45(6), 6788–6794 (2019). https://doi.org/10.1016/j.ceramint.2018.12.171.

    Article  CAS  Google Scholar 

  18. D.W. Ni, K.B. Andersen, and V. Esposito, Sintering and grain growth kinetics in La0.85Sr0.15MnO3-Ce0.9Gd0.1O1.95 (LSM-CGO) porous composite. J. Eur. Ceram. Soc. 34(15), 3769–3778 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.04.044.

    Article  CAS  Google Scholar 

  19. W. Zhang, L. Chen, C.G. Xu, X.M. Lv, Y.J. Wang, J.H. Ouyang, and Y. Zhou, Grain growth kinetics and densification mechanism of (TiZrHfVNbTa)C high-entropy ceramic under pressureless sintering. J. Mater. Sci. Technol. 110(30), 57–64 (2022). https://doi.org/10.1016/j.jmst.2021.08.070.

    Article  Google Scholar 

  20. L. Chen, Y.L. Ai, Q.J. Yu, W.H. Chen, W. He, J.J. Zhang, and X.X. Min, Study on the growth kinetics of Al2O3 columnar crystal in Al2O3 matrix composite ceramics prepared by microwave sintering. J. Cryst. Growth 507, 395–401 (2019). https://doi.org/10.1016/j.jcrysgro.2018.11.039.

    Article  CAS  Google Scholar 

  21. X.C. Wang, J. Zhao, E.Z. Cui, Z.F. Sun, and H. Yu, Grain growth kinetics and grain refinement mechanism in Al2O3 /WC/TiC/graphene ceramic composite. J. Eur. Ceram. Soc. 41(2), 1391–1398 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.019.

    Article  CAS  Google Scholar 

  22. B.W. Hakki, and P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter rang. IEEE Trans. 8(4), 402–410 (1960). https://doi.org/10.1109/tmtt.1960.1124749.

    Article  Google Scholar 

  23. W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators. IEEE Trans. Microw. Theory 18(8), 476–485 (2003). https://doi.org/10.1109/TMTT.1970.1127271.

    Article  Google Scholar 

  24. J. Liu, J. Baeyens, Y.M. Deng, X.L. Wang, and H.L. Zhang, High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage. J. Environ. Manag. 267, 110582 (2020). https://doi.org/10.1016/j.jenvman.2020.110582.

    Article  CAS  Google Scholar 

  25. N. Nekokar, M. Pourabdoli, A.G. Hamidi, and D. Uner, Effect of mechanical activation on thermal energy storage properties of Co3O4/CoO system. Adv. Powder Technol. 29(2), 333–340 (2018). https://doi.org/10.1016/j.apt.2017.11.020.

    Article  CAS  Google Scholar 

  26. C.L. Huang, J.L. Huang, and T.H. Hsu, Microwave dielectric properties of novel Na2Mg5−xZnx (MoO4)6 (x = 0–0.09) ceramics for ULTCC applications. Mater. Res. Bull 141, 141111355 (2021). https://doi.org/10.1016/j.materresbull.2021.111355.

    Article  CAS  Google Scholar 

  27. R. Gupta, D.H. Kim, and H.T. Kim, Microwave dielectric properties and thermal conductivities of low-temperature sintered (Na1−xKx)2MoO4 (x ≤ 0.2) ceramics. Ceram Int. 48, 15282–15292 (2022). https://doi.org/10.1016/j.ceramint.2022.02.062.

    Article  CAS  Google Scholar 

  28. H. Deng, T.H. Yuan, R.D. Li, F.H. Zeng, G.H. Liu, and X. Zhou, Spark plasma sintering of pure tungsten powder: densification kinetics and grain growth. Powder Technol. 310, 264–271 (2017). https://doi.org/10.1016/j.powtec.2017.01.050.

    Article  CAS  Google Scholar 

  29. J.E. Burke and D. Turnbull, Recrystallization and grain growth. Progr. Met. Phys. 3, 220–292 (1952). https://doi.org/10.1016/0502-8205(52)90009-9.

    Article  CAS  Google Scholar 

  30. A.J. Ardell, On the coarsening of grain boundary precipitates. Acta Metall. 20(4), 601–609 (1972). https://doi.org/10.1016/0001-6160(72)90015-6.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51902268); the Sichuan Science and Technology Program (2021YFG0235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Zhang, Y., Ding, S. et al. Structure, Dielectric Properties, and Grain Growth Kinetics of MO-ZrO2-Ta2O5 (M = Zn, Co) Microwave Ceramics. J. Electron. Mater. 52, 2614–2625 (2023). https://doi.org/10.1007/s11664-023-10224-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10224-0

Keywords

Navigation