Skip to main content
Log in

Demonstration of N-Polar GaN MIS-HEMT with High-k Atomic Layer Deposited HfO2 as Gate Dielectric

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

While SiN has been the choice of dielectric for N-polar GaN high electron mobility transistors (HEMTs), high-k dielectrics need to be explored for thin-channel HEMTs to further increase the frequency of operation. In this work, we report N-polar metal-insulator-semiconductor (MIS)-HEMTs with atomic layer deposited HfO2 as the gate dielectric. The device with gate width of WG = 2 × 50 μm, gate length of LG = 500 nm, gate-to-source distance of LGS = 400 nm, and gate-to-drain distance of LGD = 1.5 μm demonstrated a maximum drain current of 1 mA/mm with on-resistance of 1.28 Ω mm. A very low gate leakage of 10 nA/mm was measured in the on-state, which increased to 0.2 µA/mm with 11 V gate-drain voltage in the off-state. Pulsed-IV measurement revealed that there are two competing mechanisms at play, resulting in dispersion and anti-dispersion at the same time. The device demonstrated higher breakdown voltage compared to N-polar HEMTS with in situ metal–organic chemical vapor deposition SiN dielectric with similar two-dimensional electron gas (2DEG) concentration. An fT/fmax of 19.1/69.5 GHz was measured on this device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. U.K. Mishra, S. Likun, T.E. Kazior, and Y. F. Wu , GaN-based RF power devices and amplifiers. Proc. IEEE 96, 287 (2008).

    Article  CAS  Google Scholar 

  2. M.H. Wong, S. Keller, N.S. Dasgupta, D.J. Denninghoff, S. Kolluri, D.F. Brown, J. Lu, N.A. Fichtenbaum, E. Ahmadi, U. Singisetti, A. Chini, S. Rajan, S.P. DenBaars, J.S. Speck, and U.K. Mishra, N-polar GaN epitaxy and high electron mobility transistors. Semicond. Sci. Technol. 28, 074009 (2013).

    Article  Google Scholar 

  3. Y. Niida, Y. Kamada, T. Ohki, S. Ozaki, K. Makiyama, Y. Minoura, N. Okamot, M. Sato, K. Joshin, and K. Watanabe 3.6 W/mm high power density W-band InAlGaN/GaN HEMT MMIC power amplifier, in 2016 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR) (IEEE, 2016) p. 24–6

  4. S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D.F. Brown, N.A. Fichtenbaum, J.S. Speck, S.P. DenBaars, and U.K. Mishra, Recent progress in metal-organic chemical vapor deposition\( \left( {00\bar{1}} \right) \) of N-polar group-III nitrides. Semicond. Sci. Technol. 29, 113001 (2014).

    Article  Google Scholar 

  5. T. Palacios, F. Calle, M. Varela, C. Ballesteros, E. Monroy, F.B. Naranjo, M.A. Sánchez-García, E. Calleja, and E. Muñoz, Wet etching of GaN grown by molecular beam epitaxy on Si(111). Semicond. Sci. Technol. 15, 996 (2000).

    Article  CAS  Google Scholar 

  6. D. Zhuang, and J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R Rep. 48, 1–46 (2005).

    Article  Google Scholar 

  7. S. Dasgupta, B.D.F. Nidhi, F. Wu, S. Keller, J.S. Speck, and U.K. Mishra, Ultralow nonalloyed ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth. Appl. Phys. Lett. 96, 143504 (2010).

    Article  Google Scholar 

  8. P.S. Park, and S. Rajan, Simulation of short-channel effects in N- and Ga-polar AlGaN/GaN HEMTs. IEEE Trans. Electron Dev. 58, 704 (2011).

    Article  CAS  Google Scholar 

  9. D. Guerra, M. Saraniti, N. Faralli, D.K. Ferry, S.M. Goodnick, and F.A. Marino, Comparison of N- and Ga-Face GaN HEMTs through cellular Monte Carlo simulations. IEEE Trans. Electron Dev. 57, 3348 (2010).

    Article  CAS  Google Scholar 

  10. E. Ahmadi, S. Keller, and U.K. Mishra, Model to explain the behavior of 2DEG mobility with respect to charge density in N-polar and Ga-polar AlGaN-GaN heterostructures. J. Appl. Phys. 120, 115302 (2016).

    Article  Google Scholar 

  11. B. Romanczyk, X. Zheng, M. Guidry, H. Li, N. Hatui, C. Wurm, A. Krishna, E. Ahmadi, S. Keller, and U.K. Mishra, W-band power performance of SiN-passivated N-polar GaN deep recess HEMTs. IEEE Electron Dev. Lett. 41, 349 (2020).

    Article  CAS  Google Scholar 

  12. O. Breitschädel, L. Kley, H. Gräbeldinger, J. Hsieh, B. Kuhn, F. Scholz, and H. Schweizer, Short-channel effects in AlGAN/GaN HEMTs. Mater. Sci. Eng. B 82, 238 (2001).

    Article  Google Scholar 

  13. A. Endoh, Y. Yamashita, K. Ikeda, M. Higashiwaki, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimural, Fabrication of sub‐50‐nm‐gate i‐AlGaN/GaN HEMTs on sapphire. Phys. Status Solidi. 7, 2368 (2003).

    Article  Google Scholar 

  14. G.H. Jessen, R.C. Fitch, J.K. Gillespie, G. Via, A. Crespo, D. Langley, D.J. Denninghoff, M. Trejo, and E.R. Heller, Short-channel effect limitations on high-frequency operation of AlGaN/ GaN HEMTs for T-gate devices. IEEE Trans. Electron Dev. 54, 2589 (2007).

    Article  CAS  Google Scholar 

  15. S. Mohanty, I. Sayed, Z. Jian, U. Mishra, and E. Ahmadi, Investigation and optimization of HfO2 gate dielectric on N-polar GaN: impact of surface treatments, deposition, and annealing conditions. Appl. Phys. Lett. 119, 042901 (2021).

    Article  CAS  Google Scholar 

  16. C.J. Clymore, S. Mohanty, Z. Jian, A. Krishna, S. Keller, and E. Ahmadi, HfO2 as gate insulator on N-polar GaN-AlGaN heterostructures. Semicond. Sci. Technol. 36, 035017 (2021).

    CAS  Google Scholar 

  17. D. Bisi, B. Romanczyk, X. Liu, G. Gupta, T. Brown-Heft, R. Birkhahn, R. Lal, C. J. Neufeld, S. Keller, P. Parikh, U. K. Mishra and L. McCarthy, Commercially available N-polar GaN HEMT epitaxy for RF applications, in2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) (IEEE, 2021) p. 250–4

  18. S. M. Wienecke, N-polar deep recess MISHEMTs for mm-wave applications, PhD Dissertation, University of California, Santa Barbara, CA (2018)

  19. J. Kuzmik, R. Javorka, A. Alam, M. Marso, M. Heuken, and P. Kordos, Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method. IEEE Trans. Electron Dev. 49, 1496–1498 (2002).

    Article  CAS  Google Scholar 

  20. R. Vetury, N.Q. Zhang, S. Keller, and U.K. Mishra, The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Dev. 48, 560–566 (2001).

    Article  CAS  Google Scholar 

  21. B. Romanczyk, M. Guidry, X. Zheng, H. Li, E. Ahmadi, S. Keller, and U. Mishra, Demonstration of record-high mm-wave power performance using N-polar gallium nitride HEMTs. J. Microelectron. Eng. Conf. 16, 24 (2019).

    Google Scholar 

  22. W. Liu, B. Romanczyk, M. Guidry, N. Hatui, C. Wurm, W. Li, P. Shrestha, X. Zheng, S. Keller, and U.K. Mishra, 6.2 W/Mm and record 33.8% PAE at 94 GHz from N-polar GaN deep recess MIS-HEMTs With ALD Ru gates. IEEE Microw. Wirel. Compon. Lett. 31, 748–751 (2021).

    Article  Google Scholar 

  23. B. Romanczyk, S. Wienecke, M. Guidry, H. Li, E. Ahmadi, X. Zheng, S. Keller, and U.K. Mishra, Demonstration of constant 8 W/mm power density at 10, 30, and 94 GHz in state-of-the-art millimeter-wave N-polar GaN MISHEMTs. IEEE Trans. Electron Dev. 65, 45–50 (2018).

    Article  CAS  Google Scholar 

  24. X. Zheng, N-polar GaN MIS-HEMTs with silicon nitride Passivation for mm-wave applications, PhD Dissertation, University of California, Santa Barbara, CA (2018)

  25. S. Wienecke, B. Romanczyk, M. Guidry, H. Li, X. Zheng, E. Ahmadi, K. Hestroffer, L. Megalini, S. Keller, and U. K. Mishra, N-polar deep recess MISHEMTs with record 2.9 W/mm at 94 GHz. IEEE Electron Dev. Lett. 37, 713 (2016).

    CAS  Google Scholar 

  26. S.R. Bahl and J.A. del Alamo, A new drain-current injection technique for the measurement of off-state breakdown voltage in FETs. IEEE Trans. Electron Dev. 40, 1558 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Office of Naval Research (ONR) (Program Manager: Dr. Paul Maki) through Grant No. N00014-20-1-2658. This work was performed in part at the University of Michigan Lurie Nanofabrication Facility (LNF), which is supported by the College of Engineering at the University of Michigan. The data were presented previously at the 64th Electronic Materials Conference, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajit Mohanty.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S., Jian, Z., Khan, K. et al. Demonstration of N-Polar GaN MIS-HEMT with High-k Atomic Layer Deposited HfO2 as Gate Dielectric. J. Electron. Mater. 52, 2596–2602 (2023). https://doi.org/10.1007/s11664-023-10222-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10222-2

Keywords

Navigation