Skip to main content

Advertisement

Log in

Room-Temperature Persistent Photoconductivity in Barium Calcium Titanate

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Barium calcium titanate (Ba1-xCaxTiO3, BCTO) annealed under a flowing humid 2% hydrogen–argon gas mixture exhibits room-temperature persistent photoconductivity (PPC). The annealing atmosphere was chosen to produce substitutional hydrogen impurities that can be photoexcited, leading to the PPC phenomenon. The threshold photon energy for PPC in a BCTO crystal with x = 0.15 is 2.7 eV, lower than that for BaTiO3 and SrTiO3 (2.9 eV). A significant increase in mid-infrared absorption, attributed to free carriers, was correlated with a drop in electrical resistance. This effect showed persistence for several days at room temperature. Annealing the sample in air erased the PPC, indicating that the process is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Ihlefeld, D.T. Harris, R. Keech, J.L. Jones, J.-P. Maria, and S. Trolier-McKinstry, Scaling effects in perovskite ferroelectrics: fundamental limits and process–structure–property relations. J. Am. Ceram. Soc. 99, 2537 (2016).

    Article  CAS  Google Scholar 

  2. G.L. Brennecka, J.F. Ihlefeld, J.-P. Maria, B.A. Tuttle, and P.G. Clem, Processing technologies for high-permittivity thin films in capacitor applications. J. Am. Ceram. Soc. 93, 3935 (2010).

    Article  CAS  Google Scholar 

  3. R.K. Sonia, P. Patel, C. Prakash. Kumar, and D.K. Agrawal, Low temperature synthesis and dielectric, ferroelectric and piezoelectric study of microwave sintered BaTiO3 ceramics. Ceram. Int. 38, 1585 (2012).

    Article  CAS  Google Scholar 

  4. R.H. Upadhyay, A.P. Argekar, and R.R. Deshmukh, Characterization, dielectric and electrical behaviour of BaTiO3 nanoparticles prepared via titanium(IV) triethanolaminato isopropoxide and hydrated barium hydroxide. Bull Mater Sci 37, 481 (2014).

    Article  CAS  Google Scholar 

  5. Y. Wei, Y. Song, X. Deng, B. Han, X. Zhang, Y. Shen, and Y. Lin, Dielectric and ferroelectric properties of BaTiO3 nanofibers prepared via electrospinning. J. Mater. Sci. Technol. 30, 743 (2014).

    Article  CAS  Google Scholar 

  6. P. Kumar Patel, J. Rani, N. Adhlakha, H. Singh, and K.L. Yadav, Enhanced dielectric properties of doped barium titanate ceramics. J. Phys. Chem. Solids 74, 545 (2013).

    Article  CAS  Google Scholar 

  7. E. Krätzig, F. Welz, R. Orlowski, V. Doormann, and M. Rosenkranz, Holographic storage properties of BaTiO3. Solid State Commun. 34, 817 (1980).

    Article  Google Scholar 

  8. A.R. Johnston, Dispersion of electro-optic effect in BaTiO3. J. Appl. Phys. 42, 3501 (1971).

    Article  CAS  Google Scholar 

  9. V.S. Puli, R. Martınez, V. Ashok Kumar, J.F. Scott, and R.S. Katiyar, Mater Res. Bull 46, 2527 (2011).

    Article  CAS  Google Scholar 

  10. V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, and R.S. Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors. J. Phys. D. Appl. Phys. 44, 395403 (2011).

    Article  Google Scholar 

  11. W. Liu and X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  12. P. Günter and J.-P. Huignard eds., Photorefractive Materials and Their Applications 1. Vol. 113 (New York: Springer, 2006).

    Google Scholar 

  13. D.E. Rase and R. Roy, Phase equilibria in the system BaO–TiO2. J. Am. Ceram. Soc. 38, 102 (1955).

    Article  CAS  Google Scholar 

  14. C. Kuper, R. Pankrath, and H. Hesse, Growth and dielectric properties of congruently melting Ba1−XCaxTiO3 crystals. Appl. Phys. A 65, 301 (1997).

    Article  CAS  Google Scholar 

  15. J.P. Remeika and W.M. Jackson, A method for growing barium titanate single crystals. J. Am. Chem. Soc. 76, 940 (1954).

    Article  CAS  Google Scholar 

  16. P.G. Schunemann, D.A. Temple, R.S. Hathcock, H.L. Tuller, H.P. Jenssen, D.R. Gabbe, and C. Warde, Role of iron centers in the photorefractive effect in barium titanate. J. Opt. Soc. Am. B. 5, 1685 (1988).

    Article  CAS  Google Scholar 

  17. D. Rytz, B.A. Wechsler, C.C. Nelson, and K.W. Kirby, Top-seeded solution growth of BaTiO3, KNbO3, SrTiO3, Bi 12TiO20 and La2–x, BaXCuO4. J. Cryst. Growth 99, 864 (1990).

    Article  CAS  Google Scholar 

  18. S. Ajimura, K. Tomomatsu, O. Nakao, A. Kurosaka, H. Tominaga, and O. Fukuda, Photorefractive effect of BaTiO3 single crystals grown in inert atmospheres. J. Opt. Soc. Am. B 9, 1609 (1992).

    Article  CAS  Google Scholar 

  19. H. Kishi, Y. Mizuno, and H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).

    Article  CAS  Google Scholar 

  20. M.T. Buscaglia, V. Buscaglia, M. Viviani, P. Nanni, and M. Hanuskova, Influence of foreign ions on the crystal structure of BaTiO3. J. Eur. Ceram. Soc. 20, 1997 (2000).

    Article  CAS  Google Scholar 

  21. Z. Yu, C. Ang, R. Guo, and A.S. Bhalla, Dielectric properties of Ba(Ti1−xZrx)O3 solid solutions. Mater. Lett. 61, 326 (2007).

    Article  CAS  Google Scholar 

  22. K. Asokan, J. C. Jan, J. W. Chiou, W. F. Pong, P. K. Tseng, I. N. Lin, X-Ray absorption spectroscopy studies of Ba1−XCaxTiO3. J. Synchrotron. Radiat. 8, 839 (2004).

    Article  Google Scholar 

  23. L. Zhang, O.P. Thakur, A. Feteira, G.M. Keith, A.G. Mould, D.C. Sinclair, and A.R. West, Comment on the use of calcium as a dopant in X8R BaTiO3-based ceramics. Appl. Phys. Lett. 90, 142914 (2007).

    Article  Google Scholar 

  24. D.F.K. Hennings and H. Schreinemacher, Ca-acceptors in dielectric ceramics sintered in reducive atmospheres. J. Eur. Ceram. Soc. 15, 795 (1995).

    Article  CAS  Google Scholar 

  25. S. Lee, W.H. Woodford, and C.A. Randall, Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites. Appl. Phys. Lett. 92, 201909 (2008).

    Article  Google Scholar 

  26. R.C. Pullar, Y. Zhang, L. Chen, S. Yang, J.R.G. Evans, A.N. Salak, D.A. Kiselev, A.L. Kholkin, V.M. Ferreira, and N. McN, Alford, dielectric measurements on a Novel Ba1−XCaxTiO3 (BCT) bulk ceramic combinatorial library. J. Electroceram. 22, 245 (2009).

    Article  CAS  Google Scholar 

  27. M.R. Panigrahi and S. Panigrahi, Diffuse phase transition and dielectric study in Ba0.95Ca0.05TiO3 ceramic. Phys. B. Condens. Matter 405, 2556 (2010).

    Article  CAS  Google Scholar 

  28. F.V. Motta, A.P.A. Marques, J.W.M. Espinosa, P.S. Pizani, E. Longo, and J.A. Varela, Room temperature photoluminescence of BCT prepared by complex polymerization method. Curr. Appl. Phys. 10, 16 (2010).

    Article  Google Scholar 

  29. E.A. Stern, Character of order–disorder and displacive components in barium titanate. Phys. Rev. Lett. 93, 037601 (2004).

    Article  Google Scholar 

  30. R.E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature 358, 6382 (1992).

    Article  Google Scholar 

  31. T.R. Shrout and S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113 (2007).

    Article  Google Scholar 

  32. X. Chen, L. Wang, Y. Jia, Y. Li, X. Li, W. Dong, B. Wang, and X. Wang, Strongly enhanced ferroelectric performance in Ca-doped barium titanate coatings produced by plasma electrolytic oxidation. Ceram. Int. 45, 13024 (2019).

    Article  CAS  Google Scholar 

  33. H. Veenhuis, T. Börger, K. Peithmann, M. Flaspöhler, K. Buse, R. Pankrath, H. Hesse, and E. Krätzig, Light-induced charge-transport properties of photorefractive barium-calcium-titanate crystals doped with rhodium. Appl. Phys. B 70, 797 (2000).

    Article  CAS  Google Scholar 

  34. M.C. Tarun, F.A. Selim, and M.D. McCluskey, Persistent photoconductivity in strontium titanate. Phys. Rev. Lett. 111, 187403 (2013).

    Article  Google Scholar 

  35. C. Pansegrau and M.D. McCluskey, Persistent photoconductivity in barium titanate. J. Appl. Phys. 131, 095701 (2022).

    Article  CAS  Google Scholar 

  36. V.M. Poole, J. Huso, and M.D. McCluskey, The role of hydrogen and oxygen in the persistent photoconductivity of strontium titanate. J. Appl. Phys. 123, 161545 (2018).

    Article  Google Scholar 

  37. S.E. Ahmed, V.M. Poole, J. Igo, Y. Gu, and M.D. McCluskey, Localized phase transition of TiO2 thin films induced by sub-bandgap laser irradiation. J. Vac. Sci. Technol. A 39, 053402 (2021).

    Article  CAS  Google Scholar 

  38. S.E. Ahmed, J. Huso, J.R. Ritter, J. Igo, Y. Gu, and M.D. McCluskey, Insulating regions in a TiO2 thin film defined by laser irradiation. J. Vac. Sci. Technol. B 38, 032203 (2020).

    Article  CAS  Google Scholar 

  39. I.B. Ouni, D. Chapron, H. Aroui, and M.D. Fontana, Ca doping in BaTiO3 crystal: effect on the Raman spectra and vibrational modes. J. Appl. Phys. 121, 114102 (2017).

    Article  Google Scholar 

  40. Y. Yang, H. Hao, L. Zhang, C. Chen, Z. Luo, Z. Liu, Z. Yao, M. Cao, and H. Liu, Structure, electrical and dielectric properties of Ca substituted BaTiO3 ceramics. Ceram. Int. 44, 11109 (2018).

    Article  CAS  Google Scholar 

  41. W.S. Baer, Free-carrier absorption in reduced SrTiO3. Phys. Rev. 144, 734 (1966).

    Article  CAS  Google Scholar 

  42. Z. Zhang and A. Janotti, Cause of extremely long-lasting room-temperature persistent photoconductivity in SrTiO3 and related materials. Phys. Rev. Lett. 125, 126404 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. Remple for performing the current-voltage measurement in Supplementary Figure S3. This work was supported by the National Science Foundation under Grant No. DMR- 2109334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. McCluskey.

Ethics declarations

Conflict of interest

V.M.P. is an employee of Klar Scientific, Inc. and M.D.M. owns equity in the company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 282 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.E., Poole, V.M., Jesenovec, J. et al. Room-Temperature Persistent Photoconductivity in Barium Calcium Titanate. J. Electron. Mater. 52, 2499–2504 (2023). https://doi.org/10.1007/s11664-022-10205-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10205-9

Keywords

Navigation