Skip to main content
Log in

Structural Transformation of Thin Ge2Sb2Te5<Ag> Films Produced by Ion-Plasma Co-Sputtering Under Laser Irradiation

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural transformation under laser irradiation in nanosized amorphous Ge2Sb2Te5 films modified with silver (Ge2Sb2Te5<Ag>) is investigated herein. Films with thickness of ~ 100 nm were obtained by ion-plasma radio-frequency magnetron sputtering of a Ge2Sb2Te5-Ag combined polycrystalline target in an argon atmosphere. The silver concentration in the films was varied up to 12.3 at.%. The structure of amorphous films under laser irradiation was assessed in situ by Raman spectroscopy. The results showed that in the Ge2Sb2Te5 and Ge2Sb2Te5<Ag> films, under the action of laser irradiation, a phase transition occurred from an amorphous to a crystalline state. A phenomenon was observed in the phase transition in the Ge2Sb2Te5<Ag> films featuring the absence of an intermediate phase with a cubic structure (fcc) under the transition from the amorphous phase to the final phase with a stable hexagonal structure (hcp) at a certain concentration of Ag (5.5 and 12.3 at.%) and irradiation energy (1.6 mW). The discovery of this feature of the phase transition in Ge2Sb2Te5<Ag> films, which is controlled by the Ag concentration and irradiation power, is important for both the implementation of multilevel information recording and increased recording speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S. Raoux, F. Xiong, M. Wuttig, and E. Pop, Phase change materials and phase change memory. MRS Bull. 39, 703 (2014).

    Article  Google Scholar 

  2. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R.S. Shenoy, Phase change memory technology. J. Vac. Sci. Technol. 28, 223 (2010).

    Article  CAS  Google Scholar 

  3. N. Yamada, R. Kojima, M. Uno, T. Akiyama, H. Kitaura, K. Narumi, and K. Nishiuchi, Phase change material for use in a rewritable dual-layer optical disk. Proc. SPIE 4342, 55 (2002).

    Article  CAS  Google Scholar 

  4. B.G. Sangeetha, C.M. Joseph, and K. Suresh, Preparation and characterization of Ge1Sb2Te4 thin films for phase change memory applications. Microelectron. Eng. 127, 77 (2014).

    Article  CAS  Google Scholar 

  5. R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, Interfacial phase-change memory. Nat. Nanotechnol. 6, 501 (2011).

    Article  CAS  Google Scholar 

  6. E.R. Meinders, A.V. Mijiritskii, L. van Pieterson, and M. Wuttig, Optical Data Storage. Phase-Change Media and Recording (Dordrecht: Springer, 2006).

    Google Scholar 

  7. M. Wuttig and S. Raoux, Phase Change Materials: Science and Applications (Boston, MA: Springer, 2009).

    Google Scholar 

  8. A. Redaelli, Phase Change Memory: Device Physics Reliability and Applications (NewYork: Springer, 2018).

    Book  Google Scholar 

  9. P. Urban, M.N. Schneider, L. Erra, S. Welzmiller, F. Fahrnbauer, and O. Oeckler, Temperature dependent resonant X-ray diffraction of single-crystalline Ge2Sb2Te5. CrystEngComm 15, 4823 (2013).

    Article  CAS  Google Scholar 

  10. Y. Zheng, Y. Wang, T. Xin, Y. Cheng, R. Huang, P. Liu, M. Luo, Z. Zhang, S. Lv, Z. Song, and S. Feng, Direct atomic identification of cation migration induced gradual cubic-to-hexagonal phase transition in Ge2Sb2Te5. Commun. Chem. (2019). https://doi.org/10.1038/s42004-019-0114-7.

    Article  Google Scholar 

  11. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653 (2008).

    Article  CAS  Google Scholar 

  12. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, and T. Uruga, Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703 (2004).

    Article  CAS  Google Scholar 

  13. E.M. Vinod, K. Ramesh, and K.S. Sangunni, Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys. Sci. Rep. (2015). https://doi.org/10.1038/srep08050.

    Article  Google Scholar 

  14. Z. Li, Y. Hu, T. Wen, J. Zhai, and T. Lai, Femtosecond laser-induced crystallization of amorphous N-doped Ge8Sb92 films and in situ characterization by coherent phonon spectroscopy. J. Appl. Phys. 117, 135703 (2015). https://doi.org/10.1063/1.4916726

    Article  CAS  Google Scholar 

  15. A.I. Popov, N.I. Michalev, and V.K. Shemetova, Structural modification of some glassy chalcogenides. Philos. Mag. B. 47, 73 (1983).

    Article  CAS  Google Scholar 

  16. S.S. Sarsembinov, Y. Prikhodko, A.P. Ryaguzov, Y. Maksimova, and V.Z. Ushanov, Differences in local structure between amorphous As-Se films prepared by different methods. Semicond. Sci. Technol. 17, 1072 (2002).

    Article  CAS  Google Scholar 

  17. V.L. Averyanov, B.L. Gelmont, B.T. Kolomiets, V.M. Lyubin, O.Y. Prikhodko, and K.D. Tsendin, Mechanism of extrinsic conductivity in modified vitreous semiconducters. J. Non-cryst. Solids. 64, 279 (1984).

    Article  CAS  Google Scholar 

  18. M.A. Luong, N. Cherkashin, B. Pecassou, C. Sabbione, F. Mazen, and A. Claverie, Effect of nitrogen doping on the crystallization kinetics of Ge2Sb2Te5. Nanomaterials (2021). https://doi.org/10.3390/nano11071729.

    Article  Google Scholar 

  19. M.N. Julian, C. Williams, S. Borg, S. Bartram, and H.J. Kim, Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging. Optica 7, 746 (2020).

    Article  CAS  Google Scholar 

  20. V.E. Madhavan, M. Carignano, A. Kachmar, and K.S. Sangunni, Crystallization properties of arsenic doped GST alloys. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-49168-z.

    Article  Google Scholar 

  21. B. Kolomiets, V. Averyanov, V. Lyubin, and O. Prikhodko, Modification of vitreous As2Se3. Sol. Energy Mater. 8, 1 (1982).

    Article  CAS  Google Scholar 

  22. V. Usurov, Theory of Isomorphous Mixibility (Moscow: Nauka Publishing House, 1977).

    Google Scholar 

  23. J.-L. Xia, B. Liu, Z.-T. Song, S.-L. Feng, and B. Chen, Electrical properties of Ag-doped Ge2Sb2Te5 films used for phase change random access memory. Chin. Phys. Lett. 22, 934 (2005).

    Article  CAS  Google Scholar 

  24. K.H. Song, S.W. Kim, J.H. Seo, and H.Y. Lee, Influence of the additive Ag for crystallization of amorphous Ge-Sb-Te thin films. Thin Solid Films 517, 3958 (2009).

    Article  CAS  Google Scholar 

  25. K. Shportko, L. Revutska, O. Paiuk, J. Baran, A. Stronski, A. Gubanova, and E. Venger, Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-Te chalcogenide alloys studied by Raman spectroscopy. Opt. Mater. 73, 489 (2017).

    Article  CAS  Google Scholar 

  26. L. Prazakova, E. Nolot, E. Martinez, F. Fillot, D. Rouchon, N. Rochat, M. Bernard, C. Sabbione, D. Morel, N. Bernier, A. Grenier, A.-M. Papon, M.-C. Cyrille, and G. Navarro, Temperature driven structural evolution of Ge-rich GeSbTe alloys and role of N-doping. J. Appl. Phys. 128, 1 (2020).

    Article  Google Scholar 

  27. K.S. Andrikopoulos, S.N. Yannopoulos, A.V. Kolobov, P. Fons, and J. Tominaga, Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials. J. Phys. Chem. Solids. 68, 1074 (2007).

    Article  CAS  Google Scholar 

  28. P. Němec, V. Nazabal, A. Moreac, J. Gutwirth, L. Beneš, and M. Frumar, Amorphous and crystallized Ge-Sb-Te thin films deposited by pulsed laser: local structure using Raman scattering spectroscopy. Mater. Chem. Phys. 136, 935 (2012).

    Article  Google Scholar 

  29. A. Shalini, Y. Liu, F. Katmis, W. Braun, G.P. Srivastava, and R.J. Hicken, Coherent phonon modes of crystalline and amorphous Ge2Sb2Te5 thin films: a fingerprint of structure and bonding. J. Appl. Phys. 117, 025306 (2015).

    Article  Google Scholar 

  30. J. Fu, X. Shen, Y. Xu, G. Wang, Q. Nie, C. Lin, S. Dai, T. Xu, and R. Wang, Structural evolution of Ge2Sb2Te5 films under the 488 nm laser irradiation. Mater. Lett. 88, 148 (2012).

    Article  CAS  Google Scholar 

  31. S. Kozyukhin, M. Veres, H.P. Nguyen, A. Ingram, and V. Kudoyarova, Structural changes in doped Ge2Sb2Te5 thin films studied by Raman spectroscopy. Phys. Procedia 44, 82 (2013).

    Article  CAS  Google Scholar 

  32. P. Singh, R. Kaur, P. Sharma, V. Sharma, M. Mishra, G. Gupta, and A. Thakur, Optical band gap tuning of Ag doped Ge2Sb2Te5 thin films. J. Mater .Sci. Mater. Electron 28, 11300 (2017).

    Article  CAS  Google Scholar 

  33. S. Kumar, D. Singh, and R. Thangaraj, Optical properties and phase transition in photodoped amorphous Ge-Sb-Te: Ag thin films. Thin Solid Films 540, 271 (2013).

    Article  CAS  Google Scholar 

  34. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleen, and R. Dronskowski, The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122 (2007).

    Article  CAS  Google Scholar 

  35. X.-P. Wang, X.-B. Li, N.-K. Chen, Q.-D. Chen, X.-D. Han, S. Zhang, and H.-B. Sun, Element-specific amorphization of vacancy-ordered GeSbTe for ternary-state phase change memory. Acta Mater. 136, 242 (2017).

    Article  CAS  Google Scholar 

  36. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, and M. Takata, Single structure widely distributed in a GeTe-Sb2Te3 pseudobinary system: a rock salt structure is retained by intrinsically containing an enormous number of vacancies within its crystal. Inorg Chem. 45, 2235 (2006).

    Article  CAS  Google Scholar 

  37. A.V. Kolobov, P. Fons, J. Tominaga, and S.R. Ovshinsky, Vacancy-mediated three-center four-electron bonds in GeTe-Sb2Te3 phase-change memory alloys. Phys. Rev. B. 87, 165206 (2013).

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP14871061). The work was also supported in part by FSZN-2020-0026 of the Russian Ministry of Education.

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP14871061). The work was also supported in part by FSZN-2020–0026 of the Russian Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by Alibek Zhakypov and Zhandos Tolepov, data collection was performed by Kundyz Turmanova, and analysis was performed by Guzal Ismailova and Renata Nemkaeva. The first draft of the manuscript was written by Suyumbika Maksimova and Oleg Prikhodko, and all authors commented on previous versions of the manuscript. Svetlana Peshaya and Alexander Kolobov performed review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. A. Ismailova.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prikhodko, O.Y., Ismailova, G.A., Zhakypov, A.S. et al. Structural Transformation of Thin Ge2Sb2Te5<Ag> Films Produced by Ion-Plasma Co-Sputtering Under Laser Irradiation. J. Electron. Mater. 52, 2492–2498 (2023). https://doi.org/10.1007/s11664-022-10204-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10204-w

Keywords

Navigation